日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
精英家教網如圖,在三棱錐P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(1)求證:PC⊥AB.
(2)求二面角B-AP-C的正弦值.
分析:(Ⅰ)取AB中點D,利用等腰三角形的性質可得PD⊥AB,CD⊥AB,由線面垂直的判定定理可得AB⊥平面PCD,從而得到
 PC⊥AB.
(Ⅱ)利用線面垂直的判定定理得BC⊥平面PAC,取AP中點E,可證∠BEC是二面角B-AP-C的平面角,利用
 sin∠BEC=
BC
BE
 求出結果.
解答:精英家教網
解:(Ⅰ)取AB中點D,連接PD,CD.∵AP=BP,∴PD⊥AB.∵CA=CB,∴CD⊥AB.
∵PD∩CD=D,∴AB⊥平面PCD.∵PC?平面PCD,∴PC⊥AB.
(Ⅱ)∵AC=BC,PA=PAB,∴△APC≌△BPC,又 PC⊥AC,∴PC⊥BC.
又∠ACB=90°,即 AC⊥BC,且 AC∩PC=C,∴BC⊥平面PAC.
取AP中點E,連接BE,CE.∵BA=BP,∴BE⊥AP.∵EC是BE在平面PAC內的射影,
∴CE⊥AP.∴∠BEC是二面角B-AP-C的平面角.
在△BCE中,∠BCE=90°,BC=2,BE=
3
2
AB
=
6
,∴sin∠BEC=
BC
BE
=
6
3

∴二面角B-AP-C的正弦值為
6
3


精英家教網
點評:本題考查證明線線垂直的方法,求二面角的平面角的大小的方法,找出二面角的平面角是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設M是底面ABC內一點,定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,則正實數a的最小值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當△AEF的面積最大時,tanθ的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
(Ⅰ)求證:DE‖平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點繞三棱錐側面一圈回到點A的最短距離是
3
,則PA=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點D,E分別在棱
PB,PC上,且BC∥平面ADE
(I)求證:DE⊥平面PAC;
(Ⅱ)當二面角A-DE-P為直二面角時,求多面體ABCED與PAED的體積比.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 激情毛片| 涩涩视频观看 | 日韩欧美一区二区视频 | 综合色成人 | 久久久久久免费视频 | 欧洲精品在线观看 | 99国产精品久久久久久久 | 黄色片免费看 | 久久视频在线 | 91精品国产色综合久久不卡98口 | 亚洲欧美一区二区三区在线 | 欧洲一级视频 | 欧美电影一区 | 免费av在线网 | 欧美精品在线观看 | 爱爱视频网站 | 一区在线视频 | 亚洲精品久久久一区二区三区 | 国产真实乱全部视频 | 日本在线观看 | 影音先锋男人网 | 亚洲精品视频一区二区三区 | 成人三级在线 | 久久99精品久久久久久久青青日本 | 国产美女精品人人做人人爽 | 欧美区在线观看 | 黄色片在线播放 | 日韩久久精品 | 日韩一区二区在线观看视频 | 日韩视频免费 | 国产羞羞视频在线观看 | 久久精品123| 国产精品毛片 | 久久久人成影片一区二区三区 | 人人澡人人射 | 国产99久久精品一区二区永久免费 | 亚洲免费视频在线观看 | 久久青草视频 | 91国高清视频 | 综合一区二区三区 | 国产精品福利在线观看 |