【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.
(1)在極坐標(biāo)系下,設(shè)曲線與射線
和射線
分別交于
,
兩點(diǎn),求
的面積;
(2)在直角坐標(biāo)系下,直線的參數(shù)方程為
(
為參數(shù)),直線
與曲線
相交于
,
兩點(diǎn),求
的值.
【答案】(1);(2)
.
【解析】試題分析:(1)把曲線的參數(shù)方程,化為曲線的極坐標(biāo)方程,分別代入
和
,可得點(diǎn)
,
對(duì)應(yīng)的
,
,得到所以
的值,即可求得三角形的面積;
(2)由題意,得曲線的直角坐標(biāo)方程,將
的參數(shù)方程代入曲線
的普通方程,得到
,進(jìn)而求得
的長(zhǎng).
試題解析:
(1)因?yàn)榍的參數(shù)方程為
(
為參數(shù)),
所以曲線的極坐標(biāo)方程為
,
分別代入和
,可得點(diǎn)
,
對(duì)應(yīng)的
,
,滿足:
.
所以.
又,所以
的面積為
.
(2)曲線的直角坐標(biāo)方程為
.
將的參數(shù)方程代入曲線
的普通方程得
.
設(shè),
兩點(diǎn)對(duì)應(yīng)的參數(shù)為
,
,則
,
,
所以
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)為圓
上的動(dòng)點(diǎn),點(diǎn)
在
軸上的投影為
,動(dòng)點(diǎn)
滿足
,動(dòng)點(diǎn)
的軌跡為
.
(1)求的方程;
(2)設(shè)與
軸正半軸的交點(diǎn)為
,過(guò)點(diǎn)
的直線
的斜率為
,
與
交于另一點(diǎn)為
.若以點(diǎn)
為圓心,以線段
長(zhǎng)為半徑的圓與
有4個(gè)公共點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與
軸的非負(fù)半軸重合,且長(zhǎng)度單位相同,直線
的極坐標(biāo)方程為
,曲線
(
為參數(shù)).其中
.
(1)試寫(xiě)出直線的直角坐標(biāo)方程及曲線
的普通方程;
(2)若點(diǎn)為曲線
上的動(dòng)點(diǎn),求點(diǎn)
到直線
距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
,若橢圓
:
,則稱橢圓
與橢圓
“相似”.
(1)求經(jīng)過(guò)點(diǎn),且與橢圓
:
“相似”的橢圓
的方程;
(2)若,橢圓
的離心率為
,
在橢圓
上,過(guò)
的直線
交橢圓
于
,
兩點(diǎn),且
.
①若的坐標(biāo)為
,且
,求直線
的方程;
②若直線,
的斜率之積為
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某組織在某市征集志愿者參加志愿活動(dòng),現(xiàn)隨機(jī)抽出60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意參加志愿活動(dòng)和不愿意參加志愿活動(dòng)的男女生比例情況,具體數(shù)據(jù)如圖所示.
(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否有
的把握認(rèn)為愿意參與志愿活動(dòng)與性別有關(guān)?
愿意 | 不愿意 | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) |
(2)現(xiàn)用分層抽樣的方法從愿意參加志愿活動(dòng)的市民中選取7名志愿者,再?gòu)闹谐槿?人作為隊(duì)長(zhǎng),求抽取的2人至少有一名女生的概率.
參考數(shù)據(jù)及公式:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知直角梯形ABCD中,,AB//DC,AB⊥AD,E為CD的中點(diǎn),沿AE把△DAE折起到△PAE的位置(D折后變?yōu)?/span>P),使得PB=2,如圖2.
(Ⅰ)求證:平面PAE⊥平面ABCE;
(Ⅱ)求點(diǎn)B到平面PCE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系
取相同的長(zhǎng)度單位,且以原點(diǎn)
為極點(diǎn),以
軸非負(fù)半軸為極軸)中,直線
的方程為
.
(1)求曲線的普通方程及直線
的直角坐標(biāo)方程;
(2)設(shè)是曲線
上的任意一點(diǎn),求點(diǎn)
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓
:
,圓
:
.以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求,
的極坐標(biāo)方程;
(2)設(shè)曲線:
(
為參數(shù)且
),
與圓
,
分別交于
,
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,
.
(Ⅰ)若的圖像在
處的切線過(guò)點(diǎn)
,求
的值并討論
在
上的單調(diào)增區(qū)間;
(Ⅱ)定義:若直線與曲線
、
都相切,則我們稱直線
為曲線
、
的公切線.若曲線
與
存在公切線,試求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com