【題目】已知橢圓E:的左、右焦點分別為F1,F2,離心率為
,點A在橢圓E上,∠F1AF2=60°,△F1AF2的面積為4
.
(1)求橢圓E的方程;
(2)過原點O的兩條互相垂直的射線與橢圓E分別交于P,Q兩點,證明:點O到直線PQ的距離為定值,并求出這個定值.
【答案】(1)1;(2)證明見解析,
.
【解析】
(1)由面積可得
,再結合余弦定理可得
與
的關系式,由離心率再得一個關系式
,可求得
,得橢圓方程;
(2)射線的斜率不存在時,是橢圓頂點,求出
方程后可得原點到它的距離,當斜率存在且不為零時,設直線PQ為:y=kx+m,P(x,y),Q(x1,y1),直線方程與橢圓方程聯立消元后應用韋達定理得
,并計算
,再代入
可得
的關系,當然要注意
,然后由這個關系可求得原點到直線
的距離.
(1)由題意得
sin60°=4
,∴
=16,
再由余弦定理:|F1F2|2=|PF1|2+|PF2|2﹣2|PF1||PF2|cos60°=(|PF1|+|PF2|)2﹣3|PF1|
|PF2|,
即:4c2=4a2﹣316,∴c2=a2﹣12,又離心率e
,b2=a2﹣c2,∴a2=48,b2=12,
所以橢圓E的方程:1;
(2)證明:當射線的斜率不存在時,由橢圓的對稱性得,設P,Q分別是上頂點,右頂點,
則直線OQ為:,即x+2y﹣4
,這時原點到直線PQ的距離d
;
當斜率存在且不為零時,設直線PQ為:y=kx+m,P(x,y),Q(x1,y1),
與橢圓聯立得:(1+4k2)x2+8kmx+4m2﹣48=0,△=64k2m2﹣4(1+4k2)(4m2﹣48)>0,
即m2<48k2+12,x+x1=,xx1
,yy1=k2xx1+km(x+x1)+m2
,
由題意OP⊥OQ,∴0,∴xx1+yy1=0,∴5m2=48+48k2,
O到直線PQ的距離d,
綜上所述,可證明點O到直線PQ的距離為定值 .
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),其中
.以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,曲線
的極坐標方程為
.
(1)求的直角坐標方程;
(2)已知點,
與
交于點
,與
交于
兩點,且
,求
的普通方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖①,在等腰梯形中,
分別為
的中點
為
中點,現將四邊形
沿
折起,使平面
平面
,得到如圖②所示的多面體,在圖②中.
(1)證明:;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在三棱錐中,
與
都是邊長為2的等邊三角形,
、
、
、
分別是棱
、
、
、
的中點.
(1)證明:四邊形為矩形;
(2)若平面平面
,求點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,過F且與x軸垂直的直線交該拋物線于A,B兩點,|AB|=4.
(1)求拋物線的方程;
(2)過點F的直線l交拋物線于P,Q兩點,若△OPQ的面積為4,求直線l的斜率(其中O為坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,直線
被圓
截得的弦長為
.
(1)求橢圓的方程;
(2)過點的直線
交橢圓
于
,
兩點,在
軸上是否存在定點
,使得
為定值?若存在,求出點
的坐標和
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右頂點為
,左焦點為
,離心率
,過點
的直線與橢圓交于另一個點
,且點
在
軸上的射影恰好為點
,若
.
(1)求橢圓的標準方程;
(2)過圓上任意一點
作圓
的切線
與橢圓交于
,
兩點,以
為直徑的圓是否過定點,如過定點,求出該定點;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,三棱柱ABC﹣A1B1C1的側棱垂直于底面,且底面是邊長為2的正三角形,AA1=3,點D,E,F,G分別是所在棱的中點.
(Ⅰ)證明:平面BEF∥平面DA1C1;
(Ⅱ)求三棱柱ABC﹣A1B1C1夾在平面BEF和平面DA1C1之間的部分的體積.
附:臺體的體積,其中S和S′分別是上、下底面面積,h是臺體的高.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校學生會開展了一次關于“垃圾分類”問卷調查的實踐活動,組織部分學生干部在幾個大型小區隨機抽取了共50名居民進行問卷調查.調查結束后,學生會對問卷結果進行了統計,并將其中一個問題“是否知道垃圾分類方法(知道或不知道)”的調查結果統計如下表:
年齡(歲) | ||||||
頻數 | 14 | 12 | 8 | 6 | ||
知道的人數 | 3 | 4 | 8 | 7 | 3 | 2 |
(1)求上表中的的值,并補全右圖所示的的頻率直方圖;
(2)在被調查的居民中,若從年齡在的居民中各隨機選取1人參加垃圾分類知識講座,求選中的兩人中僅有一人不知道垃圾分類方法的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com