【題目】已知橢圓 :
(
)的離心率
,直線
被以橢圓
的短軸為直徑的圓截得的弦長為
.
(1)求橢圓 的方程;
(2)過點 的直線
交橢圓于
,
兩個不同的點,且
,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】為了進一步推動全市學習型黨組織、學習型社會建設,某市組織開展“學習強國”知識測試,每人測試文化、經濟兩個項目,每個項目滿分均為60分.從全體測試人員中隨機抽取了100人,分別統計他們文化、經濟兩個項目的測試成績,得到文化項目測試成績的頻數分布表和經濟項目測試成績的頻率分布直方圖如下:
經濟項目測試成績頻率分布直方圖
分數區間 | 頻數 |
2 | |
3 | |
5 | |
15 | |
40 | |
35 |
文化項目測試成績頻數分布表
將測試人員的成績劃分為三個等級如下:分數在區間內為一般,分數在區間
內為良好,分數在區間
內為優秀.
(1)在抽取的100人中,經濟項目等級為優秀的測試人員中女生有14人,經濟項目等級為一般或良好的測試人員中女生有34人.填寫下面列聯表,并根據列聯表判斷是否有以上的把握認為“經濟項目等級為優秀”與性別有關?
優秀 | 一般或良好 | 合計 | |
男生數 | |||
女生數 | |||
合計 |
(2)用這100人的樣本估計總體,假設這兩個項目的測試成績相互獨立.
(i)從該市測試人員中隨機抽取1人,估計其“文化項目等級高于經濟項目等級”的概率.
(ii)對該市文化項目、經濟項目的學習成績進行評價.
附:
0.150 | 0.050 | 0.010 | |
2.072 | 3.841 | 6.635 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在長方體中,
,點E是棱
上的一個動點,若平面
交棱
于點
,給出下列命題:
①四棱錐的體積恒為定值;
②存在點,使得
平面
;
③對于棱上任意一點
,在棱
上均有相應的點
,使得
平面
;
④存在唯一的點,使得截面四邊形
的周長取得最小值.
其中真命題的是____________.(填寫所有正確答案的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠對一批產品進行了抽樣檢測.如圖是根據抽樣檢測后的產品凈重(單位:克)數據繪制的頻率分布直方圖,其中產品凈重的范圍是[96,106],樣本數據分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產品凈重小于100克的個數是36.
(1)求樣本容量及樣本中凈重大于或等于96克并且小于102克的產品的個數;
(2)已知這批產品中每個產品的利潤y(單位:元)與產品凈重x(單位:克)的關系式為求這批產品平均每個的利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD是矩形,平面DCC1D1⊥平面ABCD.AD=3,CD=DD1=5,∠D1DC=120°,M,N分別是線段AD1,BD的中點.
(1)求證:MN//平面DCC1D1;
(2)求證:MN⊥平面ADC1;
(3)求三棱錐D1﹣ADC1的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校工會開展健步走活動,要求教職工上傳3月1日至3月7日微信記步數信息,下圖是職工甲和職工乙微信記步數情況:
(Ⅰ)從3月1日至3月7日中任選一天,求這一天職工甲和職工乙微信記步數都不低于10000的概率;
(Ⅱ)從3月1日至3月7日中任選兩天,記職工乙在這兩天中微信記步數不低于10000的天數為,求
的分布列及數學期望;
(Ⅲ)如圖是校工會根據3月1日至3月7日某一天的數據,制作的全校200名教職工微信記步數的頻率分布直方圖.已知這一天甲和乙微信記步數在單位200名教職工中排名分別為第68和第142,請指出這是根據哪一天的數據制作的頻率分布直方圖(不用說明理由).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義集合與集合
之差是由所有屬于
且不屬于
的元素組成的集合,記作
且
.已知集合
.
(Ⅰ)若集合,寫出集合
的所有元素;
(Ⅱ)從集合選出10個元素由小到大構成等差數列,其中公差的最大值
和最小值
分別是多少?公差為
和
的等差數列各有多少個?
(Ⅲ)設集合,且集合
中含有10個元素,證明:集合
中必有10個元素組成等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知兩點,
,動點P在y軸上的攝影是H,且
,
(1)求動點P的軌跡方程;
(2)設直線,
的兩個斜率存在,分別記為
,
,若
,求點P的坐標;
(3)若經過點的直線l與動點P的軌跡有兩個交點為T、Q,當
時,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《復仇者聯盟4:終局之戰》是安東尼·羅素和喬·羅素執導的美國科幻電影,改編自美國漫威漫畫,自2019年4月24日上映以來票房火爆.某電影院為了解在該影院觀看《復仇者聯盟4》的觀眾的年齡構成情況,隨機抽取了100名觀眾的年齡,并分成,
,
,
,
,
,
七組,得到如圖所示的頻率分布直方圖.
(1)求這100名觀眾年齡的平均數(同一組數據用該區間的中點值作代表)、中位數;
(2)該電影院擬采用抽獎活動來增加趣味性,觀眾可以選擇是否參與抽獎活動(不參與抽獎活動按原價購票),活動方案如下:每張電影票價格提高10元,同時購買這樣電影票的每位觀眾可獲得3次抽獎機會,中獎1次則獎勵現金元,中獎2次則獎勵現金
元,中獎三次則獎勵現金
元,其中
且
,已知觀眾每次中獎的概率均為
.
①以某觀眾三次抽獎所獲得的獎金總額的數學期望為評判依據,若要使抽獎方案對電影院有利,則最高可定為多少;
②據某時段內的統計,當時該電影院有600名觀眾選擇參加抽獎活動,并且
每增加1元,則參加抽獎活動的觀眾增加100人.設該時間段內觀影的總人數不變,抽獎活動給電影院帶來的利潤的期望為
,求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com