日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】[選修4-5:不等式選講]

已知函數(shù).

(Ⅰ)當時,求的解集;

(Ⅱ)當時, 恒成立,求實數(shù)的取值范圍.

【答案】(Ⅰ) (Ⅱ)

【解析】試題分析:(Ⅰ)利用零點分段去絕對值求解即可;

(Ⅱ)當時, 恒成立,即顯然當時,不等式恒成立,當時,討論和定義域的關(guān)系即可.

試題解析:

(Ⅰ)當時,由,可得

①或②或

解①求得,解②求得,解③求得

綜上可得不等式的解集為

(Ⅱ)∵當時, 恒成立,即

時,

時,

,即時, ,所以;

,即時, ,所以;

,即時, 時,不等式不成立

綜上,

點晴:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.第二問將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的各項均為正數(shù),且a1+2a2=5,4a=a2a6.

(1)求數(shù)列{an}的通項公式;

(2)若數(shù)列{bn}滿足b1=2,且bn+1=bn+an,求數(shù)列{bn}的通項公式;

(3)設(shè),求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“劍橋?qū)W派”創(chuàng)始人之一數(shù)學(xué)家哈代說過:“數(shù)學(xué)家的造型,同畫家和詩人一樣,也應(yīng)當是美麗的”;古希臘數(shù)學(xué)家畢達哥拉斯創(chuàng)造的“黃金分割”給我們的生活處處帶來美;我國古代數(shù)學(xué)家趙爽創(chuàng)造了優(yōu)美“弦圖”.“弦圖”是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

以平面直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,已知點的直角坐標為,若直線的極坐標方程為,曲線的參數(shù)方程是,(為參數(shù)).

(1)求直線的直角坐標方程和曲線的普通方程;

(2)設(shè)直線與曲線交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=,設(shè)bn=,n∈N*。

(1)證明{bn}是等比數(shù)列(指出首項和公比);

(2)求數(shù)列{log2bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),在以直角坐標系的原點為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(Ⅰ)求曲線的直角坐標方程和直線的普通方程;

(Ⅱ)若直線與曲線相交于 兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201911日起我國實施了個人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應(yīng)納稅所得額(含稅)=收入-個稅起征點-專項附加扣除;(3)專項附加扣除包括:①贍養(yǎng)老人費用,②子女教育費用,③繼續(xù)教育費用,④大病醫(yī)療費用等,其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除2000元,②子女教育費用:每個子女每月扣除1000元,新的個稅政策的稅率表部分內(nèi)容如下:

級數(shù)

一級

二級

三級

每月應(yīng)納稅所得額元(含稅)

稅率

3

10

20

現(xiàn)有李某月收入為18000元,膝下有一名子女在讀高三,需贍養(yǎng)老人,除此之外無其它專項附加扣除,則他該月應(yīng)交納的個稅金額為(

A.1800B.1000C.790D.560

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, 底面

(1)證明:平面平面

(2)若二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點,

(I)證明:平面平面

(II)若 三棱錐的體積為,求該三棱錐的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 欧美成人一区二区 | 青楼18春一级毛片 | 婷婷激情综合 | 国产女爽爽视频精品免费 | 午夜免费网| 国产传媒在线视频 | avmans最新导航地址 | 欧美一区二区三区视频 | 黄色片com| aaaaaa黄色片| 亚洲91精品 | 色无欲天天天影视综合网 | 国产精品一区二 | 国产性色av | 暖暖av| av中文在线 | 国产精品2019| 亚洲精品乱码久久久久v最新版 | 国产不卡一二三区 | 久久久久久国产精品 | 亚洲电影一区 | avsex国产| 九一在线观看 | 精品国产青草久久久久福利 | 人人精品 | 欧美午夜一区 | 男插男视频 | 精品视频久久 | 日本一区二区三区在线播放 | 亚州中文字幕 | 在线h观看| 日韩在线播放一区 | 国产毛片在线 | 国内精品久久久久久中文字幕 | 亚洲欧美日韩在线 | 欧美午夜精品一区二区三区电影 | 中文字幕av网| 国产精品久久久久久久久久99 | 青青久久 | 欧美成人激情视频 | 久久综合中文字幕 |