(1)證明f(x)在(-1,1)上為奇函數(shù);
(2)求f(xn)的表達(dá)式;
(3)是否存在自然數(shù)m,使得對(duì)于任意n∈N*,有+
+…+
<
成立?若存在,求出m的最小值.
(1)證明:當(dāng)x=y時(shí),f(0)=0;
令x=0,得f(0)-f(y)=f(-y),即f(y)+f(-y)=0,
∴對(duì)任意的x∈(-1,1),有f(x)+f(-x)=0.
故f(x)在(-1,1)上為奇函數(shù).
(2)解:∵數(shù)列{xn}滿足x1=,xn+1=
.
∴0<xn<1.
∴f(xn)-f(-xn)=f[]=f(
).
又f(x)在(-1,1)為奇函數(shù),
∴f(xn+1)=2f(xn).
由f()=1,x1=
,有f(x1)=1,從而f(xn)=2n-1.
(3)解:+
+…+
=1+
+
+…+
=2-
.
假設(shè)存在自然數(shù)m,使得對(duì)于任意的n∈N*,
有+
+…+
<
成立,即2-
<
恒成立.
∴≥2,解得m≥16. 1
∴.存在自然數(shù)m≥16,使得對(duì)于任意n∈N*,有+
+…+
<
成立.
此時(shí),m的最小值為16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
ax-1 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)證明:f(x)在(-1,1)上為奇函數(shù);
(2)求f(xn)的表達(dá)式;
(3)是否存在自然數(shù)m,使得對(duì)于任意n∈N*,恒成立?若存在,求出m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求f(0)的值,并證明f(x)在(-1,1)上為奇函數(shù);
(2)探索f(xn+1)與f(xn)的關(guān)系式,并求f(xn)的表達(dá)式;
(3)是否存在自然數(shù)m,使得對(duì)于任意的n∈N*,+
+…+
>
恒成立?若存在,求出m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求f(0)的值,并證明f(x)在(-1,1)上為奇函數(shù);
(2)探索f(xn+1)與f(xn)的關(guān)系式,并求f(xn)的表達(dá)式;
(3)是否存在自然數(shù)m,使得對(duì)于任意的n∈N*,有+
+
+…+
<
恒成立?若存在,求出m的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com