【題目】運輸公司年有
萬輛公交車,計劃
年投入
輛新型號公交車,以后每年投入的新型號公交車數量均比上年增加
.
(1)年應投入多少輛新型號公交車?
(2)從年到
年間共投入多少輛新型號公交車?
(3)從哪一年開始,該公司新型號公交車總量超過該公司公交車總量的?
【答案】(1)輛;(2)
輛;(3)到
年底.
【解析】
(1)設從第年開始第
年投入的車輛數為
,可知數列
是以
為首項,以
為公比的等比數列,由此可計算出
年投入的新型號公交車
輛;
(2)利用等比數列的求和公式計算出數列的前
項和,即可得出
年到
年間共投入的新型號公交車的數量;
(3)求出等比數列的前
項和
,然后解不等式
,得出正整數
的最小值,即可得出問題的解答.
(1)設從第年開始第
年投入的車輛數為
,
可知數列是以
為首項,以
為公比的等比數列,
,因此,
年應投入
輛新型號公交車;
(2)設等比數列的前
項和為
,則
,
因此,從年到
年間共投入
輛新型號公交車;
(3)由等比數列的前項和公式得
,
由題意可得,得
,即
,
化簡得,
,
,
.
因此,從年開始,該公司新型號公交車總量超過該公司公交車總量的
.
科目:高中數學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫院抄錄了至
月份每月
號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:
日期 |
|
|
|
|
|
|
晝夜溫差 | ||||||
就診人數 | 16 |
該興趣小組確定的研究方案是:先從這六組數據中選取組,用剩下的
組數據求線性回歸方程,再用被選取的
組數據進行檢驗.
(1)求選取的2組數據恰好是相鄰兩個月的概率;
(2)若選取的是月與
月的兩組數據,請根據
至
月份的數據,求出
關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司培訓員工某項技能,培訓有如下兩種方式:
方式一:周一到周五每天培訓1小時,周日測試
方式二:周六一天培訓4小時,周日測試
公司有多個班組,每個班組60人,現任選兩組記為甲組、乙組
先培訓;甲組選方式一,乙組選方式二,并記錄每周培訓后測試達標的人數如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進行培訓,分別估計員工受訓的平均時間
精確到
,并據此判斷哪種培訓方式效率更高?
在甲乙兩組中,從第三周培訓后達標的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A,B分別為雙曲線 (a>0,b>0)的左、右頂點,雙曲線的實軸長為4
,焦點到漸近線的距離為
.
(1)求雙曲線的方程;
(2)已知直線y=x-2與雙曲線的右支交于M,N兩點,且在雙曲線的右支上存在點D,使
,求t的值及點D的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為正方形,且
,其中
,
,
分別是
,
,
的中點,動點
在線段
上運動時,下列四個結論:①
;②
;③
面
;④
面
,
其中恒成立的為( )
A. ①③ B. ③④ C. ①④ D. ②③
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com