【題目】《周髀算經》中給出了:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二節氣的日影長依次成等差數列的結論.已知某地立春與雨水兩個節氣的日影長分別為尺和
尺,現在從該地日影長小于
尺的節氣中隨機抽取
個節氣進行日影長情況統計,則所選取這
個節氣中恰好有
個節氣的日影長小于
尺的概率為( )
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】如圖,是拋物線
的焦點,過點
且與坐標軸不垂直的直線交拋物線于
、
兩點,交拋物線的準線于點
,其中
,
.過點
作
軸的垂線交拋物線于點
,直線
交拋物線于點
.
(1)求的值;
(2)求四邊形的面積
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,
為兩個平面,命題
:
的充要條件是
內有無數條直線與
平行;命題
:
的充要條件是
內任意一條直線與
平行,則下列說法正確的是( )
A.“”為真命題B.“
”為真命題
C.“”為真命題D.“
”為真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年寒假是特殊的寒假,因為疫情全體學生只能在家進行網上在線學習,為了研究學生在網上學習的情況,某學校在網上隨機抽取120名學生對于線上教育進行調查,其中男生與女生的人數之比為,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成列聯表,并回答能否有99%的把握認為對“線上教育是否滿意與性別有關”;
滿意 | 不滿意 | 總計 | |
男生 | |||
女生 | |||
合計 | 120 |
(2)從被調查中對線上教育滿意的學生中,利用分層抽樣抽取8名學生,再在8名學生中抽取2名學生,作線上學習的經驗介紹,求其中抽取一名男生與一名女生的概率.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.842 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,點、
分別為雙曲線
的左、右焦點,雙曲線
的離心率為
,點
在雙曲線
上,不在
軸上的動點
與動點
關于原點
對稱,且四邊形
的周長為
.
(1)求動點的軌跡
的方程;
(2)過點的直線交
的軌跡
于
,
兩點,
為
上一點,且滿足
,其中
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點為拋物線
的焦點,過點
任作兩條互相垂直的直線
,
,分別交拋物線
于
,
,
,
四點,
,
分別為
,
的中點.
(1)求證:直線過定點,并求出該定點的坐標;
(2)設直線交拋物線
于
,
兩點,試求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為
,圓柱表面上的點
在左視圖上的對應點為
,則在此圓柱側面上,從
到
的路徑中,最短路徑的長度為( )
A. B.
C.
D. 2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過橢圓的左頂點
作斜率為2的直線,與橢圓的另一個交點為
,與
軸的交點為
,已知
.
(1)求橢圓的離心率;
(2)設動直線與橢圓有且只有一個公共點
,且與直線
相交于點
,若
軸上存在一定點
,使得
,求橢圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,以原點
為圓心,橢圓
的長半軸為半徑的圓與直線
相切.
(1)求橢圓的標準方程;
(2)已知點,
為動直線
與橢圓
的兩個交點,問:在
軸上是否存在點
,使
為定值?若存在,試求出點
的坐標和定值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com