(本題14分)已知圓和點
(1)若過點有且只有一條直線與圓
相切,求實數
的值,并求出切線方程;
(2)若,過點
作圓的兩條弦
,且
互相垂直,求
的最大值。
(1)或即
。(2)
【解析】本試題主要是考查了直線與圓的位置關系的運用。
(1)因為圓和點
,若過點
有且只有一條直線與圓
相切,則聯立方程組只有一個實數解得到切線方程。
(2)若,過點
作圓的兩條弦
,且
互相垂直,設
到直線
的距離分別為
,則
于是
,
,所以
則
,則利用不等式得到結論。
解:(1)由條件知點在圓
上,所以
,則
。當
時,點
為
,
,
此時切線方程為
,即
。當
時,點
為
,
,
此時切線方程為
,即
。所以所求的切線方程為
或即
。-------------6分
(2)設到直線
的距離分別為
,則
于是
,
,所以
則
,因為
,所以
,當且僅當
時取等號,所以
,所以
,所以
,即
的最大值為--------------------14分
科目:高中數學 來源: 題型:
(本題14分)已知直線:y=kx+1與雙曲線C:2x2-y2=1的右支交于不同的兩點A、B。(1)求實數k的取值范圍;(2)是否存在實數k,使得以線段AB為直徑的圓經過雙曲線C的右焦點F?若薦在,求出k的值。若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源:2014屆廣東省高一年級第二學期5月月考數學試卷(解析版) 題型:解答題
(本題滿分14分)已知圓,圓
,動點
到圓
,
上點的距離的最小值相等.
(1)求點的軌跡方程;
(2)點的軌跡上是否存在點
,使得點
到點
的距離減去點
到點
的距離的差為
,如果存在求出
點坐標,如果不存在說明理由.
查看答案和解析>>
科目:高中數學 來源:2013屆江蘇省淮安七校高二上學期期中考試理科數學 題型:解答題
(本題滿分14分)
已知圓內有一點
,AB為過點
且傾斜角為α的弦,
(1)當α=135º時,求直線AB的方程
(2)若弦AB被點平分,求直線AB的方程。
查看答案和解析>>
科目:高中數學 來源:2014屆廣東省湛江市高一第一學期第二學段考試數學 題型:解答題
(本題14分)已知與圓C:相切的直線
交x軸、y軸于A、B兩點,O為原點,|OA|=3,|OB|=b(b>2).
(1) 求b的值;
(2) 求△ABC的外接圓方程。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com