【題目】已知三棱錐的四個(gè)頂點(diǎn)在球
的球面上,
,
是邊長為
正三角形,
分別是
的中點(diǎn),
,則球
的體積為_________________。
【答案】
【解析】
由已知設(shè)出,
,
,分別在
中和在
中運(yùn)用余弦定理表示
,得到關(guān)于x與y的關(guān)系式,再在
中運(yùn)用勾股定理得到關(guān)于x與y的又一關(guān)系式,聯(lián)立可解得x,y,從而分析出正三棱錐是
,
,
兩兩垂直的正三棱錐,所以三棱錐
的外接球就是以
為棱的正方體的外接球,再通過正方體的外接球的直徑等于正方體的體對(duì)角線的長求出球的半徑,再求出球的體積.
在中,設(shè)
,
,
,
,
,
因?yàn)辄c(diǎn),點(diǎn)
分別是
,
的中點(diǎn),所以
,
,
在中,
,在
中,
,
整理得,
因?yàn)?/span>是邊長為
的正三角形,所以
,
又因?yàn)?/span>,所以
,由
,解得
,
所以。
又因?yàn)?/span>是邊長為
的正三角形,所以
,所以
,
所以,
,
兩兩垂直,
則球為以
為棱的正方體的外接球,
則外接球直徑為,
所以球的體積為
,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)且
,則“函數(shù)
在
上是減函數(shù)”是“函數(shù)
在
上是增函數(shù)”的( )條件.
A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在九章算術(shù)
中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬
如圖,已知四棱錐
為陽馬,且
,
底面
若E是線段AB上的點(diǎn)
含端點(diǎn)
,設(shè)SE與AD所成的角為
,SE與底面ABCD所成的角為
,二面角
的平面角為
,則
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:的焦點(diǎn)為F,M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),O為坐標(biāo)原點(diǎn),記經(jīng)過M,F,O三點(diǎn)的圓的圓心為Q,且點(diǎn)Q到拋物線C的準(zhǔn)線的距離為
.
Ⅰ
求點(diǎn)Q的縱坐標(biāo);
可用p表示
Ⅱ
求拋物線C的方程;
Ⅲ
設(shè)直線l:
與拋物線C有兩個(gè)不同的交點(diǎn)A,
若點(diǎn)M的橫坐標(biāo)為2,且
的面積為
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,設(shè)
:實(shí)數(shù)
滿足
,
:實(shí)數(shù)
滿足
.
(1)若,且
為真,求實(shí)數(shù)
的取值范圍;
(2)若是
的必要不充分條件,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),有下列命題:①當(dāng)
時(shí),
是增函數(shù);當(dāng)
時(shí),
是減函數(shù);②其圖象關(guān)于
軸對(duì)稱;③
無最大值,也無最小值;④
在區(qū)間
上是增函數(shù);⑤
的最小值是
。其中所有不正確命題的序號(hào)是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:
則下面結(jié)論中不正確的是
A. 新農(nóng)村建設(shè)后,種植收入減少
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計(jì)劃在市的
區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開設(shè)分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記
表示在各區(qū)開設(shè)分店的個(gè)數(shù),
表示這個(gè)
個(gè)分店的年收入之和.
| 2 | 3 | 4 | 5 | 6 |
| 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合與
的關(guān)系,求
關(guān)于
的線性回歸方程
;
(2)假設(shè)該公司在區(qū)獲得的總年利潤
(單位:百萬元)與
之間的關(guān)系為
,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在
區(qū)開設(shè)多少個(gè)分時(shí),才能使
區(qū)平均每個(gè)分店的年利潤最大?
(參考公式: ,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,在五面體ABCDEF中,四邊形EDCF是正方形,.
(1)證明:;
(2)已知四邊形ABCD是等腰梯形,且,求五面體ABCDEF的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com