日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
試判斷函數f(x)=|ax+1|-a|x-
1a
|(a≠0)的奇偶性.
分析:利用函數奇偶性的定義,結合分類討論的數學思想,即可求得結論.
解答:解:∵f(x)=|ax+1|-a|x-
1
a
|
∴f(-x)=|-ax+1|-a|-x-
1
a
|=|a||x-
1
a
|-a|x+
1
a
|
∴當a>0時,f(-x)=-f(x),f(x)為奇函數;
當a<0時,f(-x)=f(x),f(x)為偶函數.
點評:本題考查函數奇偶性,考查分類討論的數學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知:函數f(x)=ax+
b
x
+c
(a、b、c是常數)是奇函數,且滿足f(1)=
5
2
,f(2)=
17
4

(Ⅰ)求a、b、c的值;
(Ⅱ)試判斷函數f(x)在區間(0,
1
2
)
上的單調性并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

13、已知函數 f(x)=x2-2|x|-1,試判斷函數f(x)的奇偶性,并作出函數的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)的導數f′(x)=3x2-3ax,f(0)=b.a,b為實數,1<a<2.
(Ⅰ)若f(x)在區間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的條件下,求經過點P(2,1)且與曲線f(x)相切的直線l的方程;
(Ⅲ)設函數F(x)=(f′(x)+6x+1)•e2x,試判斷函數F(x)的極值點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數g(x)=ax2-2ax+1+b(a>0)在區間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(Ⅰ)求實數a,b的值;
(Ⅱ)若不等式f(log2k)>f(2)成立,求實數k的取值范圍;
(Ⅲ)定義在[p,q]上的一個函數m(x),用分法T:p=x0<x1<…<xi<…<xn=q將區間[p,q]任意劃分成n個小區間,如果存在一個常數M>0,使得和式
n
i=1
|m(xi)-m(xi-1)|≤M
恒成立,則稱函數m(x)為在[p,q]上的有界變差函數,試判斷函數f(x)是否為在[1,3]上的有界變差函數?若是,求M的最小值;若不是,請說明理由.(參考公式:
n
i=1
f(x)=f(x1)+f(x2)+
…+f(xn))

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2x-t
x2+3
(t∈R)

(1)若關于x的方程x2-tx-3=0的兩實數為a,b(a<b),試判斷函數f(x)在區間(a,b)上的單調性,并說明理由;
(2)若函數f(x)的圖象在x=-1處的切線斜率為
1
2
,求當x>0時,f(x)的最大值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩欧美一区在线 | 看逼网站 | 国产精品一区三区 | 日本黄色免费视频 | 性欧美精品 | 欧美又粗又长 | 九九在线精品 | 欧美日韩成人一区二区三区 | 成人亚洲天堂 | 中文字幕在线视频观看 | 欧美日韩成人一区二区三区 | 日本黄色免费视频 | 丁香婷婷六月天 | 久久久一本 | ass亚洲尤物裸体pics | 天天干天天色天天射 | 午夜影院免费观看 | 午夜999 | 久久免费精品 | 欧美综合在线观看 | 亚洲无av在线中文字幕 | 亚洲最新视频 | 91在线精品李宗瑞 | 国产福利在线 | 久久精品一区二区三区四区五区 | 九色91在线 | 欧美特黄视频 | 久久久精品一区二区 | 色综合久久综合 | 日韩成人免费视频 | 亚洲一区二区av | 婷婷色在线 | 亚洲欧美一区二区三区在线 | 国产日本精品 | 成人激情片 | 丁香婷婷激情 | 久久综合五月天 | 美女张开腿 | 国产欧美成人 | 狠狠狠干| 国产在线一 |