【題目】為了讓稅收政策更好的為社會發(fā)展服務(wù),國家在修訂《中華人民共和國個人所得稅法》之后,發(fā)布了《個人所得稅專項(xiàng)附加扣除暫行辦法》,明確“專項(xiàng)附加扣除”就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈養(yǎng)老人等費(fèi)用,并公布了相應(yīng)的定額扣除標(biāo)準(zhǔn),決定自2019年1月1日起施行,某機(jī)關(guān)為了調(diào)查內(nèi)部職員對新個稅方案的滿意程度與年齡的關(guān)系,通過問卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:
40歲及以下 | 40歲以上 | 合計 | |
基本滿意 | 15 | 30 | 45 |
很滿意 | 25 | 10 | 35 |
合計 | 40 | 40 | 80 |
(1)根據(jù)列聯(lián)表,能否有99%的把握認(rèn)為滿意程度與年齡有關(guān)?
(2)為了幫助年齡在40歲以下的未購房的8名員工解決實(shí)際困難,該企業(yè)擬員工貢獻(xiàn)積分(單位:分)給予相應(yīng)的住房補(bǔ)貼
(單位:元),現(xiàn)有兩種補(bǔ)貼方案,方案甲:
;方案乙:
.已知這8名員工的貢獻(xiàn)積分為2分,3分,6分,7分,7分,11分,12分,12分,將采用方案甲比采用方案乙獲得更多補(bǔ)貼的員工記為“
類員工”.為了解員工對補(bǔ)貼方案的認(rèn)可度,現(xiàn)從這8名員工中隨機(jī)抽取4名進(jìn)行面談,求恰好抽到3名“
類員工”的概率。
附:,其中
.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)見解析(2)
【解析】
(1)由列聯(lián)表計算的觀測值即可求解;(2)由題得8名員工的貢獻(xiàn)積分及按甲、乙兩種方案所獲補(bǔ)貼情況,進(jìn)一步得到“
類員工”的人數(shù),再利用古典概型求解即可
(1)根據(jù)列聯(lián)表可以求得的觀測值:
.
∵.
∴有99%的把握認(rèn)為滿意程度與年齡有關(guān)
(2)據(jù)題意,該8名員工的貢獻(xiàn)積分及按甲、乙兩種方案所獲補(bǔ)貼情況為:
積分 | 2 | 3 | 6 | 7 | 7 | 11 | 12 | 12 |
方案甲 | 2400 | 3100 | 5200 | 5900 | 5900 | 8700 | 9400 | 9400 |
方案乙 | 3000 | 3000 | 5600 | 5600 | 5600 | 9000 | 9000 | 9000 |
由表可知,“類員工”有5名.
設(shè)從這8名員工中隨機(jī)抽取4名進(jìn)行面談,恰好抽到3名“類員工”的概率為
.
則
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,在三棱錐中, 側(cè)面
與側(cè)面
均為等邊三角形,
為
中點(diǎn).
(Ⅰ)證明:平面
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,橢圓,
、
,為橢圓
的左、右頂點(diǎn).
設(shè)
為橢圓
的左焦點(diǎn),證明:當(dāng)且僅當(dāng)橢圓
上的點(diǎn)
在橢圓的左、右頂點(diǎn)時,
取得最小值與最大值.
若橢圓
上的點(diǎn)到焦點(diǎn)距離的最大值為
,最小值為
,求橢圓
的標(biāo)準(zhǔn)方程.
若直線
與
中所述橢圓
相交于
、
兩點(diǎn)(
、
不是左、右頂點(diǎn)),且滿足
,求證:直線
過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)X~N(μ1,),Y~N(μ2,
),這兩個正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 ( )
A. P(Y≥μ2)≥P(Y≥μ1)
B. P(X≤σ2)≤P(X≤σ1)
C. 對任意正數(shù)t,P(X≥t)≥P(Y≥t)
D. 對任意正數(shù)t,P(X≤t)≥P(Y≤t)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:函數(shù).
(1)求函數(shù)在點(diǎn)
處的切線方程;
(2)求函數(shù)的
上的最大值;
(3)當(dāng)時,試討論函數(shù)
的零點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線和點(diǎn)
,直線
與拋物線
交于不同兩點(diǎn)
,
,直線
與拋物線
交于另一點(diǎn)
.給出以下判斷:
①直線與直線
的斜率乘積為
;
②軸;
③以為直徑的圓與拋物線準(zhǔn)線相切.
其中,所有正確判斷的序號是( )
A.①②③B.①②C.①③D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“五四青年節(jié)”到來之際,啟東中學(xué)將開展一系列的讀書教育活動.為了解高二學(xué)生讀書教育情況,決定采用分層抽樣的方法從高二年級四個社團(tuán)中隨機(jī)抽取12名學(xué)生參加問卷調(diào)査.已知各社團(tuán)人數(shù)統(tǒng)計如下:
(1)若從參加問卷調(diào)查的12名學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生來自同一個社團(tuán)的概率;
(2)在參加問卷調(diào)查的12名學(xué)生中,從來自三個社團(tuán)的學(xué)生中隨機(jī)抽取3名,用
表示從
社團(tuán)抽得學(xué)生的人數(shù),求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)有極小值,求該極小值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的
倍(縱坐標(biāo)不變),再將所得的圖象向左平移
個單位長度后得到函數(shù)
的圖象.
(1)寫出函數(shù)的解析式;
(2)若對任意
,
恒成立,求實(shí)數(shù)
的取值范圍;
(3)求實(shí)數(shù)和正整數(shù)
,使得
在
上恰有
個零點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com