【題目】如圖,一智能掃地機器人在A處發現位于它正西方向的B處和北偏東方向上的C處分別有需要清掃的垃圾,紅外線感應測量發現機器人到B的距離比到C的距離少0.4m,于是選擇沿
路線清掃.已知智能掃地機器人的直線行走速度為0.2m/s,忽略機器人吸入垃圾及在B處旋轉所用時間,10秒鐘完成了清掃任務.
(1)B、C兩處垃圾的距離是多少?(精確到0.1)
(2)智能掃地機器人此次清掃行走路線的夾角是多少?(用反三角函數表示)
科目:高中數學 來源: 題型:
【題目】某省在2017年啟動了“3+3”高考模式.所謂“3+3”高考模式,就是語文、數學、外語(簡稱語、數、外)為高考必考科目,從物理、化學、生物、政治、歷史、地理(簡稱理、化、生、政、史、地)六門學科中任選三門作為選考科目.該省某中學2017級高一新生共有990人,學籍號的末四位數從0001到0990.
(1)現從高一學生中抽樣調查110名學生的選考情況,問:采用什么樣的抽樣方法較為恰當?(只寫出結論,不需要說明理由)
(2)據某教育機構統計,學生所選三門學科在將來報考專業時受限制的百分比是不同的.該機構統計了受限百分比較小的十二種選擇的百分比值,制作出如下條形圖.
設以上條形圖中受限百分比的均值為,標準差為
.如果一個學生所選三門學科專業受限百分比在區間
內,我們稱該選擇為“恰當選擇”.該校李明同學選擇了化學,然后從余下五門選考科目中任選兩門.問李明的選擇為“恰當選擇"的概率是多少?(均值
,標準差
均精確到0.1)
(參考公式和數據:,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人同時參加一次數學測試,共有道選擇題,每題均有
個選項,答對得
分,答錯或不答得
分.甲和乙都解答了所有的試題,經比較,他們只有
道題的選項不同,如果甲最終的得分為
分,那么乙的所有可能的得分值組成的集合為____________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某地區某種昆蟲產卵數和溫度有關.現收集了一只該品種昆蟲的產卵數(個)和溫度
(
)的7組觀測數據,其散點圖如所示:
根據散點圖,結合函數知識,可以發現產卵數和溫度
可用方程
來擬合,令
,結合樣本數據可知
與溫度
可用線性回歸方程來擬合.根據收集到的數據,計算得到如下值:
27 | 74 | 182 |
表中,
.
(1)求和溫度
的回歸方程(回歸系數結果精確到
);
(2)求產卵數關于溫度
的回歸方程;若該地區一段時間內的氣溫在
之間(包括
與
),估計該品種一只昆蟲的產卵數的范圍.(參考數據:
,
,
,
,
.)
附:對于一組數據,
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設為數列
的前n項和, 且滿足
為常數
.
(1)若,求
的值;
(2)是否存在實數 ,使得數列
為等差數列?若存在,求出
的值;若不存在,請說明理由;
(3)當時,若數列
滿足
,且
,令
,求數列
的前n項和
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖是一塊平行四邊形園地,經測量,
.擬過線段
上一點
設計一條直路
(點
在四邊形
的邊上,不計直路的寬度),將該園地分為面積之比為
的左,右兩部分分別種植不同花卉.設
(單位:m).
(1)當點與點
重合時,試確定點
的位置;
(2)求關于
的函數關系式;
(3)試確定點的位置,使直路
的長度最短.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為正方形,
底面
,
,
為線段
的中點.
(1)若為線段
上的動點,證明:平面
平面
;
(2)若為線段
,
,
上的動點(不含
,
),
,三棱錐
的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com