(本小題滿分13分)
橢圓C:的離心率為
,且過點(2,0)
(1)求橢圓C的方程;
(2)設直線:
與橢圓C交于A、B兩點,O為坐標原點,若
OAB為直角三角形,求
的值。
(1)
(2)
【解析】解(1)依題意,可知,又
,所以可知
∴
故所求的橢圓方程為 ……………………………………………3分
(2)聯立方程消去
得
…………4分
則 解得
設 則
,
………………5分
① 若,則可知
,即
∴ 可解得
經檢驗滿足條件
所以直線滿足題意…………………………………………………………9分
② 若,則
(或
)
聯立方程 解得
或
………………………10分
Ⅰ、若A(,-
) ,則可知
-
Ⅱ、若B(-,
) ,則可知
所以也滿足題意……………………………………………………………12分
綜上可知 ,及
為所求的直線……………………………13分
另解:② 若,則
(或
)
聯立方程解得
,………………………………………………10分
則點(在
上,代入解得
,所以
也滿足題意
科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數.
(1)求函數的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數在區間
上的圖象.
(3)設0<x<,且方程
有兩個不同的實數根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題
(本小題滿分13分)已知定義域為的函數
是奇函數.
(1)求的值;(2)判斷函數
的單調性;
(3)若對任意的,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,
為
的中點。
(Ⅰ)求證:∥平面
;
(Ⅱ)求異面直線與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題
(本小題滿分13分)
已知為銳角,且
,函數
,數列{
}的首項
.
(1) 求函數的表達式;
(2)在中,若
A=2
,
,BC=2,求
的面積
(3) 求數列的前
項和
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com