【題目】某地區2020年清明節前后3天每天下雨的概率為60%,通過模擬實驗的方法來計算該地區這3天中恰好有2天下雨的概率:用隨機數(
,且
)表示是否下雨:當
時表示該地區下雨,當
時,表示該地區不下雨,從隨機數表中隨機取得20組數如下
332 714 740 945 593 468 491 272 073 445
992 772 951 431 169 332 435 027 898 719
(1)求出的值,并根據上述數表求出該地區清明節前后3天中恰好有2天下雨的概率;
(2)從2011年開始到2019年該地區清明節當天降雨量(單位:)如下表:(其中降雨量為0表示沒有下雨).
時間 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 |
年份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
降雨量 | 29 | 28 | 26 | 27 | 25 | 23 | 24 | 22 | 21 |
經研究表明:從2011年開始至2020年, 該地區清明節有降雨的年份的降雨量與年份
成線性回歸,求回歸直線
,并計算如果該地區2020年(
)清明節有降雨的話,降雨量為多少?(精確到0.01)
參考公式:.
參考數據:,
,
,
.
科目:高中數學 來源: 題型:
【題目】某商場統計了2008年到2018十一年間某種生活必需品的年銷售額及年銷售額增速圖,其中條形圖表示年(單位:萬元),折線圖年銷售額為年銷售額增長率(%).
(1)由年銷售額圖判斷,從哪年開始連續三年的年銷售額方差最大?(結論不要求證明)
(2)由年銷售額增長率圖,可以看出2011年銷售額增長率是最高的,能否表示當年銷售額增長最大?(結論不要求證明)
(3)從2010年至2014年這五年中隨機選出兩年,求至少有一年年增長率超過20%的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校高一年級學生某次身體素質體能測試的原始成績采用百分制,已知所有這些學生的原始成績均分布在內,發布成績使用等級制.各等級劃分標準見下表.
規定:三級為合格等級,D為不合格等級.為了解該校高一年級學生身體素質情況,從中抽取了
名學生的原始成績作為樣本進行統計.按照
的分組作出頻率分布直方圖如圖1所示,樣本中分數在80分及以上的所有數據的莖葉圖如圖2所示.
(I)求和頻率分布直方圖中的
的值,并估計該校高一年級學生成績是合格等級的概率;
(II)在選取的樣本中,從兩個等級的學生中隨機抽取2名學生進行調研,求至少有一名學生是
等級的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某醫院擬派2名內科醫生、3名外科醫生和3名護士共8人組成兩個醫療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫生、外科醫生和護士,則不同的分配方案有
A. 72種 B. 36種 C. 24種 D. 18種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】進入12月以來,某地區為了防止出現重污染天氣,堅持保民生、保藍天,嚴格落實機動車限行等一系列“管控令”,該地區交通管理部門為了了解市民對“單雙號限行”的贊同情況,隨機采訪了220名市民,將他們的意見和是否擁有私家車情況進行了統計,得到如下的2×2列聯表:
| 贊同限行 | 不贊同限行 | 合計 |
沒有私家車 | 90 | 20 | 110 |
有私家車 | 70 | 40 | 110 |
合計 | 160 | 60 | 220 |
(1)根據上面的列聯表判斷,能否有99%的把握認為“贊同限行與是否擁有私家車”有關;
(2)為了解限行之后是否對交通擁堵、環境污染起到改善作用,從上述調查的不贊同限行的人員中按分層抽樣抽取6人,再從這6人中隨機抽出2名進行電話回訪,求抽到的2人中至少有1名“沒有私家車”人員的概率.
參考公式:K2=
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3..841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com