【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,△ABE為等腰直角三角形,∠BAE=90°,且AD⊥AE.
(1)證明:平面AEC⊥平面BED.
(2)求直線EC與平面BED所成角的正弦值.
【答案】
(1)證明:以A為原點,AE、AB、AD分別為x,y,z軸建立空間直角坐標系
設正方形邊長為2,則E(2,0,0),B(0,2,0),C(0,2,2),D(0,0,2)
=(0,2,2),
=(0,﹣2,2),
=(2,0,0),
=(﹣2,0,2),
從而有 =0,
=0,
即BD⊥AC,BD⊥AE,
因為AC∩AE=A,
所以BD⊥平面AEC,
因為BD平面BED,
所以平面BED⊥平面AEC
(2)解:設平面BED的法向量為 =(x,y,z),
則 ,故取
=(1,1,1)
而 =(﹣2,2,2),設直線EC與平面BED所成的角為θ,
則有sinθ=|cos< ,
>|=
【解析】(1)以A為原點,AE、AB、AD分別為x,y,z軸建立空間直角坐標系,證明 =0,
=0,可得BD⊥AC,BD⊥AE,即可證明BD⊥平面AEC,從而平面AEC⊥平面BED.(2)求出平面BED的法向量,利用向量的夾角公式,即可求直線EC與平面BED所成角的正弦值.
【考點精析】解答此題的關鍵在于理解平面與平面垂直的判定的相關知識,掌握一個平面過另一個平面的垂線,則這兩個平面垂直,以及對空間角的異面直線所成的角的理解,了解已知為兩異面直線,A,C與B,D分別是
上的任意兩點,
所成的角為
,則
.
科目:高中數學 來源: 題型:
【題目】某少數民族的刺繡有著悠久的歷史,如圖(1),(2),(3),(4)為最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數越多刺繡越漂亮.現按同樣的規律刺繡(小正方形的擺放規律相同),設第n個圖形包含f(n)個小正方形.
(1)求出f(5)的值.
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關系式,并根據你得到的關系式求出f(n)的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三棱柱的各條棱長均相等,
為
的中點,
分別是線段
和線段
上的動點(含端點),且滿足
.當
運動時,下列結論中不正確的是( )
A. 平面平面
B. 三棱錐
的體積為定值
C. 可能為直角三角形 D. 平面
與平面
所成的銳二面角范圍為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C: =1(a>b>0)的離心率為
,以原點為圓心,橢圓C的短半軸長為半徑的圓與直線x﹣y+2=0相切.
(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2).設M,N是橢圓C上關于y軸對稱的不同兩點,直線PM與QN相交于點T,求證:點T在橢圓C上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險公司有一款保險產品的歷史收益率(收益率=利潤÷保費收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計平均收益率;
(Ⅱ)根據經驗,若每份保單的保費在20元的基礎上每增加元,對應的銷量
(萬份)與
(元)有較強線性相關關系,從歷史銷售記錄中抽樣得到如下5組
與
的對應數據:
據此計算出的回歸方程為.
(i)求參數的估計值;
(ii)若把回歸方程當作
與
的線性關系,用(Ⅰ)中求出的平均收益率估計此產品的收益率,每份保單的保費定為多少元時此產品可獲得最大收益,并求出該最大收益.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我市某礦山企業生產某產品的年固定成本為萬元,每生產千件該產品需另投入
萬元,設該企業年內共生產此種產品
千件,并且全部銷售完,每千件的銷售收入為
萬元,且
(Ⅰ)寫出年利潤(萬元)關于產品年產量
(千件)的函數關系式;
(Ⅱ)問:年產量為多少千件時,該企業生產此產品所獲年利潤最大?
注:年利潤=年銷售收入-年總成本.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com