日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(文科)已知數列{an}的各項均為正數,其前項和為,且對于任意的,都有點(an,Sn)在直線y=2x-2上
(1)求數列{an}的通項公式;
(2)若bn=2log2an-1,求數列{
bnan
}
的前n項和Tn
分析:(1)由題意點(an,Sn)在直線y=2x-2上,可得Sn=2an-2,利用遞推公式 an=
S1   n=1
Sn-Sn-1,  n≥2
可求an
(2)由(1)可求bn=2n-1,則數列bn為等差數列,而數列an為等比數列,
bn
an
=
2n-1
2n
=(2n-1)(
1
2
)
n
適合用錯位相減求和.
解答:解:(1)由已知Sn=2an-2  ①,當n≥2時,Sn-1=2an-1-2 ②
①-②得Sn-Sn-1=2an-2an-1,即an=2an-2an-1
an
an-1
=2
又n=1時有S1=2a1-2,得a1=2
∴{an}是首項a1=2,公比q=2的等比數列,
故數列{an}的通項公式為:an=2n
(2)由(1)知bn=2log2an-1=2log22n-1=2n-1,所以
bn
an
=
2n-1
2n
=(2n-1)(
1
2
)n

數列{
bn
an
}
的前n項和Tn=1×(
1
2
)1+3×(
1
2
)2+…+(2n-1)(
1
2
)n
  ③
③式兩邊同乘以
1
2
得,
1
2
Tn=(
1
2
)
2
+3×(
1
2
)
3
+…+(2n-1)(
1
2
)
n+1
  ④
③-④得
1
2
Tn=
1
2
+2[(
1
2
)2+(
1
2
)3+…+(
1
2
)n]
-(2n-1)(
1
2
)n+1

=
1
2
+
1
4
[1-(
1
2
)n-1]
1-
1
2
-(2n-1)(
1
2
)n+1
=
3
2
-(
1
2
)n-1-(2n-1)(
1
2
)n+1

=
3
2
-(
1
2
)n+1(4+2n-1)
=
3
2
-(
1
2
)
n+1
(2n+3)

故Tn=3-(2n+3)(
1
2
)n
點評:本題考查數列的遞推公式的運用、錯位相減求和的運用,該求和方法已知求和的熱點、難點,運用的關鍵是理解該方法的實質,掌握該求和的基本步驟.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年上海市靜安、楊浦、青浦、寶山區高考數學二模試卷(文理合卷)(解析版) 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年高考數學專項復習:創新題(3)(解析版) 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省高考數學模擬專題訓練:解答題(解析版) 題型:解答題

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 黄色成人av | 亚洲一区二区三区中文字幕 | 日韩美在线观看 | 久久久蜜桃一区二区人 | 久久黄色网 | 日本高清网站 | 国产亚洲网站 | 国产1页 | 天天夜碰日日摸日日澡 | 中文字幕日韩欧美 | 天天操妹子 | 97超碰在线播放 | 国产毛片久久久 | 男女羞羞视频在线免费观看 | 日韩成人在线看 | 日韩色av | 日精品 | 日韩一二三区视频 | 日韩一二三区视频 | 九七超碰在线 | 国产精品久久久久久久久久久新郎 | 亚洲国产精品久久精品怡红院 | 亚洲一区二区三区高清 | 国产中文字幕在线 | 国产亚洲精品久久久久动 | 国产一二三区在线观看 | 欧美亚洲视频 | 啊v视频| av色资源 | 91精品国产乱码久 | 一级毛片免费观看 | 精品福利一区二区 | 一区二区三区在线 | 欧美日韩免费看 | 视频一区二区三区在线观看 | v888av成人 | 91精品国产一区二区 | 国产又粗又大又爽视频 | 久草视频污 | 色综网 | 欧美一区二区国产 |