【題目】已知函數(shù)f(x)=ax+ ,其中函數(shù)f(x)的圖象在點(1,f(1))處的切線方程為y=x﹣1.
(1)若a= ,求函數(shù)f(x)的解析式;
(2)若f(x)≥g(x)在[1,+∞)上恒成立,求實數(shù)a的取值范圍;
(3)證明:1+ .
【答案】
(1)解:f(x)的導數(shù)為f′(x)=a﹣ ,
則有 ,解得
,
由a= ,得b=﹣
,c=0,
故f(x)= x﹣
;
(2)解:由(1)知f(x)=ax+ +1﹣2a,
令φ(x)=f(x)﹣g(x)=ax+ +1﹣2a﹣lnx,x∈[1,+∞),
則φ(1)=0,φ′(x)=a﹣ ﹣
=
,
( i)當0<a< 時,
>1.
若1<x< ,則φ′(x)<0,φ(x)是減函數(shù),
所以φ(x)<φ(1)=0,即f(x)<g(x).
故f(x)≥g(x)在[1,+∞)上不恒成立.
(ii)當a≥ 時,
≤1.
若x>1,則φ'(x)>0,φ(x)是增函數(shù),
所以φ(x)>φ(1)=0,即f(x)>g(x),
故當x≥1時,f(x)≥g(x).
綜上所述,所求a的取值范圍為[ ,+∞).
(3)證明:由(2)知當a≥ 時,有f(x)≥g(x)(x≥1).
令a= ,有f(x)=
(x﹣
)≥lnx
且當x>1時, (x﹣
)>lnx.
令x= ,有l(wèi)n
<
(
﹣
)=
[(1+
)﹣(1﹣
)]
∴l(xiāng)n(k+1)﹣lnk< (
+
),k=1,2,3,…,n,
將上述n個不等式依次相加,得ln(n+1)< +(
+
+…+
)+
,
整理得1+ +
+…+
>ln(n+1)+
.
【解析】(1)通過函數(shù)的導數(shù),利用導數(shù)值就是切線的斜率,切點在切線上,求出b,c,從而求出函數(shù)的解析式即可;(2)利用f(x)≥lnx,構造g(x)=f(x)﹣lnx,問題轉(zhuǎn)化為g(x)=f(x)﹣lnx≥0在[1,+∞)上恒成立,利用導數(shù)求出函數(shù)在[1,+∞)上的最小值大于0,求a的取值范圍;(3)由(1)可知a≥ 時,f(x)≥lnx在[1,+∞)上恒成立,則當a=
時,
(x﹣
)≥lnx在[1,+∞)上恒成立,對不等式的左側(cè)每一項裂項,然后求和,即可推出要證結論.
【考點精析】本題主要考查了利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導數(shù)的相關知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個區(qū)間單調(diào)遞減;求函數(shù)
在
上的最大值與最小值的步驟:(1)求函數(shù)
在
內(nèi)的極值;(2)將函數(shù)
的各極值與端點處的函數(shù)值
,
比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=k(x﹣1)ex+x2 . (Ⅰ)當時k=﹣ ,求函數(shù)f(x)在點(1,1)處的切線方程;
(Ⅱ)若在y軸的左側(cè),函數(shù)g(x)=x2+(k+2)x的圖象恒在f(x)的導函數(shù)f′(x)圖象的上方,求k的取值范圍;
(Ⅲ)當k≤﹣l時,求函數(shù)f(x)在[k,1]上的最小值m.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知圓
經(jīng)過
,
兩點,且圓心在直線
上.
(1)求圓的標準方程;
(2)過圓內(nèi)一點
作兩條相互垂直的弦
,當
時,求四邊形
的面積.
(3)設直線與圓
相交于
兩點,
,且
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用紅、黃、藍三種顏色給如圖所示的六個相連的圓涂色,若每種顏色只能涂兩個圓,且相鄰兩個圓所涂顏色不能相同,則不同的涂色方案的種數(shù)是( )
A.12
B.24
C.30
D.36
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某火鍋店為了解氣溫對營業(yè)額的影響,隨機記錄了該店1月份中5天的日營業(yè)額y(單位:千元)與該地當日最低氣溫x(單位:℃)的數(shù)據(jù),如表:
x | 2 | 8 | 9 | 11 | 5 |
y | 12 | 8 | 8 | 7 | 10 |
(1)求y關于x的回歸方程 ;
(2)判定y與x之間是正相關還是負相關;若該地1月份某天的最低氣溫為6℃,用所求回歸方程預測該店當日的營業(yè)額. (附:回歸方程 中,
=
=
,
=
﹣
.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣4x+4,
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在[0,3]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l經(jīng)過直線2x+y-5=0與x-2y=0的交點P.
(1)點A(5,0)到直線l的距離為3,求直線l的方程;
(2)求點A(5,0)到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,下列說法正確的是____ (填序號).
(1)直線AC1在平面CC1B1B內(nèi).
(2)設正方形ABCD與A1B1C1D1的中心分別為O、O1,則平面AA1C1C與平面BB1D1D的交線為OO1.
(3)由A、C1、B1確定的平面是ADC1B1.
(4)由A、C1、B1確定的平面與由A、C1、D確定的平面是同一個平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=log2x+ax+b(a>0),若存在實數(shù)b,使得對任意的x∈[t,t+2](t>0)都有|f(x)|≤1+a,則t的最小值是( )
A.2
B.1
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com