【題目】設(shè)橢圓的左右焦點(diǎn)分別為
,
,點(diǎn)
滿足
.
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 設(shè)直線與橢圓相交于
兩點(diǎn),若直線
與圓
相交于
,
兩點(diǎn),且
,求橢圓的方程.
【答案】(Ⅰ) (Ⅱ)
【解析】
試題分析:(Ⅰ)直接利用|PF2|=|F1F2|,對(duì)應(yīng)的方程整理后即可求橢圓的離心率e;(Ⅱ)先把直線PF2與橢圓方程聯(lián)立求出A,B兩點(diǎn)的坐標(biāo)以及對(duì)應(yīng)的|AB|兩點(diǎn),進(jìn)而求出|MN|,再利用弦心距,弦長(zhǎng)以及圓心到直線的距離之間的等量關(guān)系,即可求橢圓的方程
試題解析:(Ⅰ)設(shè),
.
因?yàn)?/span>,則
,
,
由,有
,即
,
(舍去)或
.
所以橢圓的離心率為.
(Ⅱ) 解.因?yàn)?/span>,所以
,
.所以橢圓方程為
.
直線的斜率
,則直線
的方程為
.
兩點(diǎn)的坐標(biāo)滿足方程組
消去并整理得
.則
,
.
于是
不妨設(shè)
,
.
所以.
于是.
圓心到直線
的距離
,
因?yàn)?/span>,所以
,即
,
解得(舍去),或
.于是
,
.
所以橢圓的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,且曲線
的左焦點(diǎn)
在直線
上.
(1)若直線與曲線
交于
兩點(diǎn),求
的值;
(2)求曲線的內(nèi)接矩形的周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且與直線
相切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)過(guò)(1)中軌跡上的點(diǎn)
作兩條直線分別與軌跡
相交于
兩點(diǎn),試探究:當(dāng)直線
的斜率存在且傾斜角互補(bǔ)時(shí),直線
的斜率是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓(
)的右焦點(diǎn)為
,右頂點(diǎn)為
,已知
,其中
為坐標(biāo)原點(diǎn),
為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)的直線
與橢圓交于點(diǎn)
(
不在
軸上),垂直于
的直線與
交于點(diǎn)
,與
軸交于點(diǎn)
,若
,且
,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
為直角梯形,
,
,平面
底面
,
為
的中點(diǎn),
是棱
上的點(diǎn),
,
,
.
(1)求證:平面平面
;
(2)若,求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,生產(chǎn)1噸A種產(chǎn)品需要煤4噸、電18千瓦;生產(chǎn)1噸B種產(chǎn)品需要煤1噸、電15千瓦。現(xiàn)因條件限制,該企業(yè)僅有煤10噸,并且供電局只能供電66千瓦,若生產(chǎn)1噸A種產(chǎn)品的利潤(rùn)為10000元;生產(chǎn)1噸B種產(chǎn)品的利潤(rùn)是5000元,試問(wèn)該企業(yè)如何安排生產(chǎn),才能獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)若函數(shù)在點(diǎn)
處的切線方程為
,求
的值;
(II)若在區(qū)間上,函數(shù)
的圖象恒在直線
下方,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使
恒成立,若存在,求出實(shí)數(shù)
的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線過(guò)點(diǎn)
,與
軸,
軸的正半軸分布交于
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(1)當(dāng)直線的斜率
時(shí),求
的外接圓的面積;
(2)當(dāng)的面積最小時(shí),求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com