【題目】如圖 所示,一條直角走廊寬為
,
(1)若位于水平地面上的一根鐵棒在此直角走廊內,且,試求鐵棒的長
;
(2)若一根鐵棒能水平地通過此直角走廊,求此鐵棒的最大長度;
(3)現有一輛轉動靈活的平板車,其平板面是矩形,它的寬為
如圖2.平板車若想順利通過直角走廊,其長度
不能超過多少米?
【答案】(1),
,
,
.
(2)
(3)
【解析】
(1)在圖1中,過點作
,
的垂線,垂直分別為
,
,則
,
,在
,
中,分別求解
,
再相加,即可.
(2)由(1)可知,,令
,
則
,判斷單調性,再求最小值,即可.
(3)延長分別交
,
于
,
,設
,則
.由(1)可知
,在
,
中分別計算
,
,則
,即
,令
,
則
,判斷單調性,再求最小值,即可
(1)在圖1中,過點作
,
的垂線,垂直分別為
,
,則
,
.
在中
在中
則
即,
,
,
.
(2)由(1)可知,
.
令,則
即
當時,
單調遞增,
單調遞減.
則即
時
若一根鐵棒能水平地通過此直角走廊,則需此鐵棒的最大長度為
(3)延長分別交
,
于
,
,設
,則
.
由(1)可知,
在中,
在中,
則
令,
則
即,
,
.
當時
單調遞減.
則即
時
.
平板車若想順利通過直角走廊,其長度不能超過
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax2-a-lnx,其中a ∈R.
(I)討論f(x)的單調性;
(II)確定a的所有可能取值,使得在區間(1,+∞)內恒成立(e=2.718…為自然對數的底數)。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠家具車間造、
型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張
、
型型桌子分別需要1小時和2小時,漆工油漆一張
、
型型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張
、
型型桌子分別獲利潤2千元和3千元.
(1)列出滿足生產條件的數學關系式,并畫出可行域;
(2)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環.據此,某網站推出了關于生態文明建設進展情況的調查,現從參與調查的人群中隨機選出20人的樣本,并將這20人按年齡分組:第1組,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示
(1)求a的值.
(2)根據頻率分布直方圖,估計參與調查人群的樣本數據的分位數(保留兩位小數).
(3)若從年齡在的人中隨機抽取兩位,求兩人恰有一人的年齡在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學高考結束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數據b,c;
(2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關;
(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發現它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現有問題:在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·紹興仿真考試)已知數列{an}的奇數項依次構成公差為d1的等差數列,偶數項依次構成公差為d2的等差數列(其中d1,d2為整數),且對任意n∈N*,都有an<an+1,若a1=1,a2=2,且數列{an}的前10項和S10=75,則d1=________,a8=________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·浙江卷)已知數列{an}滿足a1=且an+1=an-
(n∈N*).
(1)證明:1≤≤2(n∈N*);
(2)設數列{ }的前n項和為Sn,證明:
(n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某校高三年級學生參加社區服務次數進行統計,隨機抽取M名學生作為樣本,得到這M名學生參加社區服務的次數.根據此數據作出了頻數與頻率的統計表如下,頻率分布直方圖如圖:
分組 | 頻數 | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學生有240人,試估計該校高三學生參加社區服務的次數在區間[10,15)內的人數;
(3)在所取樣本中,從參加社區服務的次數不少于20次的學生中任選2人,求至多一人參加社區服務次數在區間[25,30)內的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com