【題目】已知函數,
(Ⅰ)求函數的最小正周期和單調遞增區間;
(Ⅱ)當時,方程
恰有兩個不同的實數根,求實數
的取值范圍;
(Ⅲ)將函數的圖象向右平移
(
)個單位后所得函數
的圖象關于原點中心對稱,求
的最小值.
科目:高中數學 來源: 題型:
【題目】已知函數,函數
.
⑴若的定義域為
,求實數
的取值范圍;
⑵當時,求函數
的最小值
;
⑶是否存在非負實數、
,使得函數
的定義域為
,值域為
,若存在,求出
、
的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列{an}滿足(1﹣a1008)5+2016(1﹣a1008)=1,(1﹣a1009)5+2016(1﹣a1009)=﹣1,數列{an}的前n項和記為Sn , 則( )
A.S2016=2016,a1008>a1009
B.S2016=﹣2016,a1008>a1009
C.S2016=2016,a1008<a1009
D.S2016=﹣2016,a1008<a1009
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學生會為了調查學生對2018年俄羅斯世界杯的關注是否與性別有關,抽樣調查100人,得到如下數據:
不關注 | 關注 | 總計 | |
男生 | 30 | 15 | 45 |
女生 | 45 | 10 | 55 |
總計 | 75 | 25 | 100 |
根據表中數據,通過計算統計量K2= ,并參考一下臨界數據:
P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
若由此認為“學生對2018年俄羅斯年世界杯的關注與性別有關”,則此結論出錯的概率不超過( )
A.0.10
B.0.05
C.0.025
D.0.01
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,函數
.
(1)若函數,
的最小值為-16,求實數
的值;
(2)若函數在區間
上是單調減函數,求實數
的取值范圍;
(3)當時,不等式
的解集為
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的方程為 +
=1(a>b>0),雙曲線
﹣
=1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4
.
(1)求橢圓C的方程;
(2)設F1 , F2分別為橢圓C的左,右焦點,過F2作直線l(與x軸不重合)交于橢圓于A,B兩點,線段AB的中點為E,記直線F1E的斜率為k,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓與圓
(1)若直線與圓
相交于
兩個不同點,求
的最小值;
(2)直線上是否存在點
,滿足經過點
有無數對互相垂直的直線
和
,它們分別與圓
和圓
相交,并且直線
被圓
所截得的弦長等于直線
被圓
所截得的弦長?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知半徑為的圓的圓心在
軸上,圓心的橫坐標是整數,且與直線
相切.
(Ⅰ)求圓的方程;
(Ⅱ)設直線
與圓相交于
兩點,求實數
的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,是否存在實數,使得弦
的垂直平分線
過點
,若存在,求出實數
的值;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓C1: +y2=1,雙曲線C2:
﹣
=1(a>0,b>0),若以C1的長軸為直徑的圓與C2的一條漸近線交于A,B兩點,且C1與該漸近線的兩交點將線段AB三等分,則C2的離心率為( )
A.9
B.5
C.
D.3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com