設(shè)函數(shù)f(x)=x2-(a-2)x-alnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn),求滿(mǎn)足條件的最小正整數(shù)a的值;
(3)若方程f(x)=c有兩個(gè)不相等的實(shí)數(shù)根x1、x2,求證:f′>0.
(1)單調(diào)增區(qū)間為,單調(diào)減區(qū)間為
(2)3(3)見(jiàn)解析
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中m,a均為實(shí)數(shù).
(1)求的極值;
(2)設(shè),若對(duì)任意的
,
恒成立,求
的最小值;
(3)設(shè),若對(duì)任意給定的
,在區(qū)間
上總存在
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)
單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間[1,2]上的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)若為
的極值點(diǎn),求
的值;
(2)若的圖象在點(diǎn)
處的切線(xiàn)方程為
,
①求在區(qū)間
上的最大值;
②求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖象與
的圖象關(guān)于直線(xiàn)
對(duì)稱(chēng)。
(Ⅰ)若直線(xiàn)與
的圖像相切, 求實(shí)數(shù)
的值;
(Ⅱ)判斷曲線(xiàn)與曲線(xiàn)
公共點(diǎn)的個(gè)數(shù).
(Ⅲ)設(shè),比較
與
的大小, 并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一火車(chē)鍋爐每小時(shí)煤的消耗費(fèi)用與火車(chē)行駛速度的立方成正比,已知當(dāng)速度為20 km/h時(shí),每小時(shí)消耗的煤價(jià)值40元,其他費(fèi)用每小時(shí)需400元,火車(chē)的最高速度為100 km/h,火車(chē)以何速度行駛才能使從甲城開(kāi)往乙城的總費(fèi)用最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(其中
為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)定義:若函數(shù)在區(qū)間
上的取值范圍為
,則稱(chēng)區(qū)間
為函數(shù)
的“域同區(qū)間”.試問(wèn)函數(shù)
在
上是否存在“域同區(qū)間”?若存在,求出所有符合條件的“域同區(qū)間”;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若,其中
.
(1)當(dāng)時(shí),求函數(shù)
在區(qū)間
上的最大值;
(2)當(dāng)時(shí),若
,
恒成立,求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com