若對任意,(
)有唯一確定的
與之對應,則稱
為關于
的二元函數。現定義滿足下列性質的二元函數
為關于實數
的廣義“距離”:
(1)非負性:,當且僅當
時取等號;
(2)對稱性:;
(3)三角形不等式:對任意的實數
均成立.
今給出三個二元函數,請選出所有能夠成為關于的廣義“距離”的序號:
①;②
;③
._________________.
科目:高中數學 來源: 題型:
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省金華十校高三上學期期末考試理科數學(解析版) 題型:解答題
(本題滿分16分)
已知函數
(1)若函數圖象在(0,0)處的切線也恰為
圖象的一條切線,求實數a的值;
(2)是否存在實數a,對任意的,都有唯一的
,使得
成立,若存在,求出a的取值范圍;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
若對任意,(
)有唯一確定的
與之對應,則稱
為關于
的二元函數。現定義滿足下列性質的二元函數
為關于實數
的廣義“距離”: (1)非負性:
,當且僅當
時取等號; (2)對稱性:
; (3)三角形不等式:
對任意的實數
均成立.今給出三個二元函數,請選出所有能夠成為關于
的廣義“距離”的序號:①
;②
;③
.________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com