分析 (1)由函數是奇函數得到c=0,再利用題中的2個等式求出a、b的值.
(2)區間(0,$\frac{1}{2}$)上任取2個自變量x1、x2,將對應的函數值作差、變形到因式積的形式,判斷符號,依據單調性的定義做出結論.
解答 解:(1)∵f(-x)=-f(x)∴c=0,
∵$\left\{\begin{array}{l}{f(1)=\frac{5}{2}}\\{f(2)=\frac{17}{4}}\end{array}\right.$,∴$\left\{\begin{array}{l}{a+b=\frac{5}{2}}\\{2a+\frac{b}{2}=\frac{14}{4}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{a=2}\\{b=\frac{1}{2}}\end{array}\right.$;
(2)∵由(1)問可得f(x)=2x+$\frac{1}{2x}$,
∴f(x)在區間(0,0.5)上是單調遞減的;
證明:設任意的兩個實數0<x1<x2<$\frac{1}{2}$,
∵f(x1)-f(x2)=2(x1-x2)+$\frac{1}{{2x}_{1}}$-$\frac{1}{{2x}_{2}}$=2(x1-x2)+$\frac{{{x}_{2}-x}_{1}}{{{2x}_{1}x}_{2}}$=$\frac{{(x}_{2}{-x}_{1})(1-{{4x}_{1}x}_{2})}{{{2x}_{1}x}_{2}}$,
又∵0<x1<x2<$\frac{1}{2}$,
∴x1-x2<0,0<x1x2<$\frac{1}{4}$,1-4x1x2>0,
f(x1)-f(x2)>0,
∴f(x)在區間(0,0.5)上是單調遞減的.
點評 本題考查用待定系數法求解析式,證明函數的單調性.
科目:高中數學 來源: 題型:解答題
立體幾何題 | 代數題 | 總計 | |
男同學 | 22 | 8 | 30 |
女同學 | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=x-1 | B. | y-1=$\frac{\sqrt{2}}{2}$(x+2) | C. | $\frac{x}{5}$+$\frac{y}{5}$=1 | D. | $\sqrt{2}$x+2y=0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | π | B. | 12π | C. | 16π | D. | 32π |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com