【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為
,
,且經(jīng)過點(diǎn)
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)的頂點(diǎn)都在橢圓
上,其中
關(guān)于原點(diǎn)對(duì)稱,試問
能否為正三角形?并說明理由.
【答案】(Ⅰ) ;(Ⅱ)
不可能為正三角形,理由見解析.
【解析】試題分析:
(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為
,依題意得
,利用橢圓的定義可得
,則橢圓
的標(biāo)準(zhǔn)方程為
.
(Ⅱ)若為正三角形,則
且
,
顯然直線的斜率存在且不為0,設(shè)
方程為
,聯(lián)立直線方程與橢圓方程可得
,
,則
,同理可得
.據(jù)此可得關(guān)于實(shí)數(shù)k的方程
,方程無解,則
不可能為正三角形.
試題解析:
(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為
,
依題意得,
,
所以,
,
故橢圓的標(biāo)準(zhǔn)方程為
.
(Ⅱ)若為正三角形,則
且
,
顯然直線的斜率存在且不為0,
設(shè)方程為
,
則的方程為
,聯(lián)立方程
,
解得,
,
所以,
同理可得.
又,所以
,
化簡得無實(shí)數(shù)解,
所以不可能為正三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各棱長都等于4的四面ABCD中,設(shè)G為BC的中點(diǎn),E為△ACD內(nèi)的動(dòng)點(diǎn)(含邊界),且GE∥平面ABD,若
=1,則|
|= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司的管理者通過公司近年來科研費(fèi)用支出x(百萬元)與公司所獲得利潤y(百萬元)的散點(diǎn)圖發(fā)現(xiàn),y與x之間具有線性相關(guān)關(guān)系,具體數(shù)據(jù)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
科研費(fèi)用x(百萬元) | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |
公司所獲利潤y(百萬元) | 1 | 1.5 | 2 | 2.5 | 3 |
(1)求y關(guān)于x的回歸直線方程;
(2)若該公司的科研投入從2011年開始連續(xù)10年每一年都比上一年增加10萬元,預(yù)測(cè)2017年該公司可獲得的利潤約為多少萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題;命題
:函數(shù)
在區(qū)間
上為減函數(shù).
(1)若命題為真命題,求實(shí)數(shù)
的取值范圍;
(2)若命題“或
”為真命題,且“
且
”為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,且
,在數(shù)列
中,
,點(diǎn)
在直線
上.
(1)求數(shù)列,
的通項(xiàng)公式;
(2)記,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C: =1的離心率e=
,動(dòng)點(diǎn)P在橢圓C上,點(diǎn)P到橢圓C的兩個(gè)焦點(diǎn)的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為 =1(m>n>0),橢圓C2的方程為
=λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若過橢圓C上動(dòng)點(diǎn)P的切線l交橢圓C2于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),試證明當(dāng)切線l變化時(shí)|PA|=|PB|并研究△OAB面積的變化情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,
,
,其中0<α<x<π.
(1)若α=,求函數(shù)
的最小值及相應(yīng)x的值;
(2)若與
的夾角為
,且
,求tan 2α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程是ρ=
,以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(﹣1,0),直線l與曲線C交于A、B兩點(diǎn).
(Ⅰ)寫出直線l的極坐標(biāo)方程與曲線C的普通方程;
(Ⅱ)求線段MA、MB長度之積MAMB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣2|+|x+a|(a∈R).
(1)若a=1時(shí),求不等式f(x)≥4的解集;
(2)若不等式f(x)≤2x的解集為[1,+∞),求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com