分析 (Ⅰ)AB,AC,AA1兩兩互相垂直,建立直角坐標系A-xyz,設AB=1,求出相關點的坐標,通過證明$\overrightarrow{{A}_{1}D}•\overrightarrow{BC}$=0,即可證明異面直線A1D與BC互相垂直.
(Ⅱ)求出平面DA1C的法向量,平面ACC1A1的法向量利用空間向量的數量積求解即可.
解答 解:因為側面ABB1A1C1,ACC1A1均為正方形,∠BAC=90°,
所以AB,AC,AA1兩兩互相垂直,如圖所示建立直角坐標系A-xyz…1分
設AB=1,則C(0,1,0),B(1,0,0),A1(0,0,1),D($\frac{1}{2}$,$\frac{1}{2}$,1).…3分
(Ⅰ)證明:由上可知:$\overrightarrow{{A_1}D}=({\frac{1}{2},\frac{1}{2},0})$,$\overrightarrow{BC}=({-1,1,0})$,…5分
所以$\overrightarrow{{A_1}D}•\overrightarrow{BC}=({-1,1,0})•({\frac{1}{2},\frac{1}{2},0})=-\frac{1}{2}+\frac{1}{2}+0=0$,…6分
所以$\overrightarrow{{A_1}D}⊥\overrightarrow{BC}$,
所以,異面直線A1D與BC互相垂直.…7分
(Ⅱ)解:$\overrightarrow{{A}_{1}D}$=($\frac{1}{2}$,$\frac{1}{2}$,0),$\overrightarrow{{A}_{1}C}$=(0,1,-1),…9分
設平面DA1C的法向量為$\overrightarrow{n}$=(x,y,z),則有
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}D}=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}C}=0}\end{array}\right.$,$\left\{\begin{array}{l}{x+y=0}\\{y-z=0}\end{array}\right.$,
取x=1,得$\overrightarrow{n}$=(1,-1,-1)…10分
又因為AB⊥平面ACC1A1,所以平面ACC1A1的法向量為$\overrightarrow{AB}$=(1,0,0),…11分
∴cos$<\overrightarrow{n},\overrightarrow{AB}>$=$|\frac{\overrightarrow{n}•\overrightarrow{AB}}{|\overrightarrow{n}||\overrightarrow{AB}|}|$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
因為二面角D-A1C-A是鈍角,
所以,二面角D-A1C-A的余弦值為$-\frac{{\sqrt{3}}}{3}$.…12分.
點評 本題考查二面角的平面角的求法,直線與直線所成角的求法,考查空間向量的應用,轉化思想的應用.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{6π}}{6}$ | B. | $\frac{\sqrt{π}}{2}$ | C. | $\frac{\sqrt{2π}}{2}$ | D. | $\frac{3\sqrt{π}}{2π}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\overrightarrow{a}$+3$\overrightarrow{b}$ | B. | $\overrightarrow{a}$-3$\overrightarrow{b}$ | C. | 3$\overrightarrow{a}$-$\overrightarrow{b}$ | D. | -3$\overrightarrow{a}$+$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com