【題目】如圖,在四棱錐中,底面
是圓內(nèi)接四邊形,
,
,
.
(1)求證:平面平面
;
(2)設(shè)線段的中點為
,線段
的中點為
,且
在線段
上運動,求直線
與平面
所成角的正弦值的最大值.
【答案】(1)證明見解析(2)
【解析】
(1)連接,交
于點
,連接
,通過證明
、
證得
平面
,由此證得
.證得
,從而證得
平面
,進(jìn)而證得平面
平面
.
(2)建立空間直角坐標(biāo)系,設(shè),通過直線
的方向向量和平面
平面而的法向量求得直線
與平面
所成角的正弦值
(1)證明:如圖,連接,交
于點
,連接
,
∵,
,
,∴
,
易得,∴
,∴
.
又,
,
平面
,
∴平面
,又
平面
,∴
.
又底面是圓內(nèi)接四邊形,∴
,
在中,由
,
,可得
,
,
∴,
,易得
,∴
,
即.又
平面
,
,
∴平面
,又
平面
,∴平面
平面
.
(2)解:點在線段
上.以
為坐標(biāo)原點,
,
,
所在直線分別為
軸、
軸、
軸,建立空間直角坐標(biāo)系,則
,
,
,
,
,
,∴
,
,
,
,設(shè)平面
的法向量為
,則
,即
,令
,則
,
設(shè),可得
,
設(shè)直線與平面
所成的角為
,則
,
∵,∴當(dāng)
時,
取得最大值
.
故直線與平面
所成角的正弦值的最大值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生自主學(xué)習(xí)期間完成數(shù)學(xué)套卷的情況,一名教師對某班級的所有學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表.
(1)從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生完成套卷數(shù)之和為4的概率?
(2)若從完成套卷數(shù)不少于4套的學(xué)生中任選4人,設(shè)選到的男學(xué)生人數(shù)為,求隨機變量
的分布列和數(shù)學(xué)期望;
(3)試判斷男學(xué)生完成套卷數(shù)的方差與女學(xué)生完成套卷數(shù)的方差
的大小(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知定點
、
,動點
滿足
,設(shè)點
的曲線為
,直線
與
交于
兩點.
(1)寫出曲線的方程,并指出曲線
的軌跡;
(2)當(dāng),求實數(shù)
的取值范圍;
(3)證明:存在直線,滿足
,并求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點
的直線l的參數(shù)方程為
(為參數(shù)),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點
到點
的距離比它到
軸的距離多1,記點
的軌跡為
;
(1)求軌跡的方程;
(2)求定點到軌跡
上任意一點
的距離
的最小值;
(3)設(shè)斜率為的直線
過定點
,求直線
與軌跡
恰好有一個公共點,兩個公共點,三個公共點時
的相應(yīng)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個四位數(shù)的各位數(shù)字相加和為10,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“2017”.試問用數(shù)字0,1,2,3,4,5,6,7組成的無重復(fù)數(shù)字且大于2017的“完美四位數(shù)”有( )個.
A. 71B. 66C. 59D. 53
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶考察三種不同的果樹苗A、B、C,經(jīng)引種試驗后發(fā)現(xiàn),引種樹苗A的自然成活率為0.8,引種樹苗B、C的自然成活率均為0.9.
(1)若引種樹苗A、B、C各10棵.
①估計自然成活的總棵數(shù);
②利用①的估計結(jié)論,從沒有自然成活的樹苗中隨機抽取兩棵,求抽到的兩棵都是樹苗A的概率;
(2)該農(nóng)戶決定引種B種樹苗,引種后沒有自然成活的樹苗中有75%的樹苗可經(jīng)過人工栽培技術(shù)處理,處理后成活的概率為0.8,其余的樹苗不能成活.若每棵樹苗引種最終成活后可獲利300元,不成活的每棵虧損50元,該農(nóng)戶為了獲利不低于20萬元,問至少引種B種樹苗多少棵?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】算籌是在珠算發(fā)明以前我國獨創(chuàng)并且有效的計算工具,為我國古代數(shù)學(xué)的發(fā)展做出了很大貢獻(xiàn).在算籌計數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如圖:
表示多位數(shù)時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:
如果把5根算籌以適當(dāng)?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個數(shù)為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com