【題目】已知命題:實數
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若,且
為真,求實數
的取值范圍;
(2)若是
的充分不必要條件,求實數
的取值范圍.
【答案】(1);(2)
.
【解析】試題分析:
先由命題解得
;命題
得
,
(1)當,得命題
,再由
為真,得
真且
真,即可求解
的取值范圍.
(2)由是
的充分不必要條件,則
是
的充分必要條件,根據則
,即可求解實數
的取值范圍.
試題解析:
命題:由題得
,又
,解得
;
命題:
,解得
.
(1)若,命題
為真時,
,
當為真,則
真且
真,
∴解得
的取值范圍是
.
(2)是
的充分不必要條件,則
是
的充分必要條件,
設,
,則
;
∴∴實數
的取值范圍是
.
【題型】解答題
【結束】
19
【題目】已知拋物線頂點在原點,焦點在軸上,又知此拋物線上一點
到焦點的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點
、
,且
中點橫坐標為2,求
的值.
科目:高中數學 來源: 題型:
【題目】學校從參加高一年級期中考試的學生中抽出名學生,并統計了她們的數學成績(成績均為整數且滿分為
分),數學成績分組及各組頻數如下:
樣本頻率分布表:
分組 | 頻數 | 頻率 |
合計 |
(1)在給出的樣本頻率分布表中,求的值;
(2)估計成績在分以上(含
分)學生的比例;
(3)為了幫助成績差的學生提高數學成績,學校決定成立“二幫一”小組,即從成績在的學生中選兩位同學,共同幫助成績在
中的某一位同學.已知甲同學的成績為
分,乙同學的成績為
分,求甲、乙兩同學恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應黨中央“扶貧攻堅”的號召,某單位指導一貧困村通過種植紫甘薯來提高經濟收入.紫甘薯對環境溫度要求較高,根據以往的經驗,隨著溫度的升高,其死亡株數成增長的趨勢.下表給出了2018年種植的一批試驗紫甘薯在不同溫度時6組死亡的株數:
溫度 | 21 | 23 | 24 | 27 | 29 | 32 |
死亡數 | 6 | 11 | 20 | 27 | 57 | 77 |
經計算:,
,
,
.
其中分別為試驗數據中的溫度和死亡株數,
.
(1)與
是否有較強的線性相關性? 請計算相關系數
(精確到
)說明.
(2)并求關于
的回歸方程
(
和
都精確到
);
(3)用(2)中的線性回歸模型預測溫度為時該批紫甘薯死亡株數(結果取整數).
附:對于一組數據,
,……,
,
①線性相關系數,通常情況下當
大于0.8時,認為兩
個變量有很強的線性相關性.
②其回歸直線的斜率和截距的最小二乘估計分別為:
;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分13分)如圖所示,已知以點為圓心的圓與直線
相切.過點
的動直線
與圓
相交于
,
兩點,
是
的中點,直線
與
相交于點
.
(1)求圓的方程;
(2)當時,求直線
的方程.
(3)是否為定值?如果是,求出其定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在桂林市某中學高中數學聯賽前的模擬測試中,得到甲、乙兩名學生的6次模擬測試成績(百分制)的莖葉圖.分數在85分或85分以上的記為優秀.
(1)根據莖葉圖讀取出乙學生6次成績的眾數,并求出乙學生的平均成績以及成績的中位數;
(2)若在甲學生的6次模擬測試成績中去掉成績最低的一次,在剩下5次中隨機選擇2次成績作為研究對象,求在選出的成績中至少有一次成績記為優秀的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,底面
為菱形,側面
為等邊三角形,且側面
底面
,
,
分別為
,
的中點.
(Ⅰ)求證: .
(Ⅱ)求證:平面平面
.
(Ⅲ)側棱上是否存在點
,使得
平面
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com