日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知點(n,an)(n∈N*)在函數f(x)=-6x-2的圖象上,數列{an}的前n項和為Sn
(Ⅰ)求Sn
(Ⅱ)設cn=an+8n+3,數列{dn}滿足d1=c1dn+1=cdn(n∈N*).求數列{dn}的通項公式;
(Ⅲ)設g(x)是定義在正整數集上的函數,對于任意的正整數x1、x2,恒有g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a為常數,且a≠0),記bn=
g(
dn+1
2
)
dn+1
,試判斷數列{bn}是否為等差數列,并說明理由.
分析:(Ⅰ)由題意可知{an}是以a1=-8為首項公差為-6的等差數列.由此可以求得Sn=-3n2-5n.
(Ⅱ)由cn=an+8n+3=-6n-2+8n+3=2n+1(n∈N*),dn+1=cdn=2dn+1,可知dn+1+1=2(dn+1)(n∈N*).再由d1=c1=3,可知{dn+1}是首項為d1+1=4,公比為2的等比數列.由此能夠求得dn=2n+1-1.
(Ⅲ)解法一:由題意可知bn+1-bn=
g(2n)
2n+1
-
g(2n-1)
2n
=
2n-1a+2g(2n-1)
2n+1
-
g(2n-1)
2n
=
a
4
.由此可知數列{bn}是等差數列.
解法二:因為g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a,故g(
dn+1
2
)=g(2n)=2n-1g(2)+2g(2n-1)
=an•2n-1,由此可知bn+1-bn=
a
4
.因此,數列{bn}是等差數列.
解答:解:(Ⅰ)由已知an=-6n-2,故{an}是以a1=-8為首項公差為-6的等差數列.
所以Sn=-3n2-5n.
(Ⅱ)因為cn=an+8n+3=-6n-2+8n+3=2n+1(n∈N*),dn+1=cdn=2dn+1,因此dn+1+1=2(dn+1)(n∈N*).
由于d1=c1=3,
所以{dn+1}是首項為d1+1=4,公比為2的等比數列.
故dn+1=4×2n-1=2n+1,所以dn=2n+1-1.
(Ⅲ)解法一:g(
dn+1
2
)=g(2n)=2n-1g(2)+2g(2n-1)

bn=
2n-1g(2)+2g(2n-1)
2n+1
=
a
4
+
g(2n-1)
2n
,bn+1=
a
4
+
g(2n)
2n+1
.bn+1-bn=
g(2n)
2n+1
-
g(2n-1)
2n
=
2n-1a+2g(2n-1)
2n+1
-
g(2n-1)
2n
=
a
4

因為a為常數,則數列{bn}是等差數列.
解法二:因為g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a,
g(
dn+1
2
)=g(2n)=2n-1g(2)+2g(2n-1)
=2n-1g(2)+2[2n-2g(2)+2g(2n-2)]=2×2n-1g(2)+22g(2n-2)=2×2n-1g(2)+22[2n-3g(2)+2g(2n-3)]=3×2n-1g(2)+23g(2n-3)═(n-1)×2n-1g(2)+2n-1g(2)=n•2n-1g(2)=an•2n-1
所以bn=
g(
dn+1
2
)
dn+1
=
an•2n-1
2n+1
=
a
4
n

bn+1-bn=
a
4

由已知a為常數,因此,數列{bn}是等差數列.
點評:本題考查數列的性質及其綜合運用,具有一定的難度,解題時認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

1、已知點(n,an)(n∈N*)都在直線3x-y-24=0上,那么在數列an中有a7+a9=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點(n,an)(n∈N*)在函數f(x)=-2x-2的圖象上,數列{an}的前n項和為Sn,數列{bn}的前n項和為Tn,且Tn是6Sn與8n的等差中項.
(1)求數列{bn}的通項公式;
(2)設cn=bn+8n+3,數列{dn}滿足d1=c1dn+1=cdn(n∈N*).求數列{dn}的前n項和Dn
(3)設g(x)是定義在正整數集上的函數,對于任意的正整數x1,x2,恒有g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a為常數,a≠0),試判斷數列{
g(
dn+1
2
)
dn+1
}
是否為等差數列,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點 (n,an)在直線y=2x上,則數列{an}(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

直線l1過(1,0)點,且l1關于直線y=x對稱直線為l2,已知點A(n,
an+1an
)
(n∈N+)在l2上,a1=1,當n≥2時,an+1an-1=anan-1+an2
(Ⅰ)求l2的方程;
(Ⅱ)求{an}的通項公式.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩亚洲视频在线观看 | 日韩免费高清视频 | 国产一区二区三区四区在线观看 | 男女啪网站 | 久久久亚洲成人 | 色五月情 | 久久久线视频 | 日本一区二区三区在线观看 | 一区二区三区精品 | 久久精品一区二区三区四区 | 国产成人在线视频观看 | 毛片毛片毛片毛片毛片 | 黄色免费av网站 | 久久久www成人免费精品 | 久久久久国产一区二区三区 | 91精品国产日韩91久久久久久 | 狠狠操麻豆 | 黄色av网页 | 日韩久久久 | 日韩一区二区三区在线视频 | 二区在线观看 | 希岛爱理av在线 | 人人草人人 | 97久久精品人人澡人人爽 | 日本精品一区 | 欧美日韩精品一区二区三区 | 欧美一区2区三区4区公司二百 | 一区二区视频 | 国产精品免费一区二区 | 欧美综合第一页 | 亚洲一在线 | 久久一区 | 成人免费视频一区二区 | 亚洲经典视频在线观看 | 天天天天天天天天干 | 亚洲三区在线观看 | 色精品视频 | 成人在线 | 国产成人精品一区 | 国产精品二区三区 | 久久国产精品毛片 |