日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f'(x)滿足0<f'(x)<1.”
(1)判斷函數(shù)是否是集合M中的元素,并說明理由;
(2)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域為D,則對于任意[m,n]30D,都存在-15P[m,n],使得等式f(n)-f(m)=(n-m)f'(x)成立”,試用這一性質(zhì)證明:方程f(x)-x=0只有一個實數(shù)根;
(3)設(shè)是方程f(x)-x=0的實數(shù)根,求證:對于f(x)定義域中任意的x2,x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時,|f(x3)-f(x2)|<2.
【答案】分析:(1)判定函數(shù)是否滿足:“①方程f(x)-x=0有實數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.”
(2)證明只有一個的問題,可利用反正法進(jìn)行證明,假設(shè)方程f(x)-x=0存在兩個實數(shù)根α,β(α≠β),然后尋找矛盾,從而肯定結(jié)論.
(3)構(gòu)造f(x)-x,研究函數(shù)f(x)-x的單調(diào)性,從而得到|f(x3)-f(x2)|<|x3-x2|,再利用絕對值不等式即可證得.
解答:解:(I)因為,所以f′(x)∈[],滿足條件0<f′(x)<1,
又因為當(dāng)x=0時,f(0)-0=1>0,f(π)-π=-1-π<0,
所以方程f(x)-x=0有實數(shù)根.
所以函數(shù)是的集合M中的元素.(3分)
(II)假設(shè)方程f(x)-x=0存在兩個實數(shù)根α,β(α≠β),
則f(α)-α=0,f(β)-β=0不妨設(shè)α<β,根據(jù)題意存在數(shù)c⊆(α,β)
使得等式f(β)-f(α)=(β-α)f'(c)成立.
因為f(α)=α,f(β)=β,且α≠β,
所以f'(c)=1,
與已知0<f'(x)<1矛盾,
所以方程f(x)-x=0只有一個實數(shù)根;(8分)
(III)不妨設(shè)x2<x3,因為f'(x)>0,
所以f(x)為增函數(shù),
所以f(x2)<f(x3),
又因為f'(x)-1<0,
所以函數(shù)f(x)-x為減函數(shù),
所以f(x2)-x2>f(x3)-x3
所以0<f(x3)-f(x2)<x3-x2
即|f(x3)-f(x2)|<|x3-x2|,
所以|f(x3)-f(x2)|<|x3-x2|=|x3-x1-(x2-x1)|≤|x3-x1|+|x2-x1|<2(14分)
點評:本題考查了導(dǎo)數(shù)的運算,反證法,以及不等式的證明,是一道函數(shù)綜合問題,有一定難度,可作為考試的壓軸題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1”.
(Ⅰ)判斷函數(shù)f(x)=
x
2
+
sinx
4
是否是集合M中的元素,并說明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域為D,則對于任意[m,n]⊆D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,試用這一性質(zhì)證明:方程f(x)-x=0只有一個實數(shù)根;
(Ⅲ)設(shè)x1是方程f(x)-x=0的實數(shù)根,求證:對于f(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時,|f(x3)-f(x2)|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f(x)滿足
0<f(x)<1”
(I)證明:函數(shù)f(x)=
3x
4
+
x3
3
(0≤x<
1
2
)是集合M中的元素;
(II)證明:函數(shù)f(x)=
3x
4
+
x3
3
(0≤x
1
2
)具有下面的性質(zhì):對于任意[m,n]⊆[0,
1
2
),都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.
(III)若集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域為D,則對于任意[m,n]⊆D,都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.試用這一性質(zhì)證明:對集合M中的任一元素f(x),方程f(x)-x=0只有一個實數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.”
(Ⅰ)判斷函數(shù)f(x)=
x
2
+
sinx
4
是否是集合M中的元素,并說明理由;
(Ⅱ)令g(x)=f(x)-x,判斷g(x)的單調(diào)性(f(x)∈M);
(Ⅲ)設(shè)x1<x2,證明:0<f(x2)-f(x1)<x2-x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:(1)方程f(x)-x=0有實數(shù)解;(2)函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.給出如下函數(shù):
f(x)=
x
2
+
sinx
4

②f(x)=x+tanx,x∈(-
π
2
π
2
)

③f(x)=log3x+1,x∈[1,+∞).
其中是集合M中的元素的有
①③
①③
.(只需填寫函數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西模擬)設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:①方程f(x)-x=0有實根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.
(1)若函數(shù)f(x)為集合M中的任意一個元素,證明:方程f(x)-x=0只有一個實根;
(2)判斷函數(shù)g(x)=
x
2
-
lnx
2
+3(x>1)
是否是集合M中的元素,并說明理由;
(3)設(shè)函數(shù)f(x)為集合M中的任意一個元素,對于定義域中任意α,β,證明|f(α)-f(β)|≤|α-β|

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 中文字幕亚洲一区二区三区 | 色悠悠久久 | 国产精品美女视频一区二区三区 | 玖玖国产 | 亚洲精品一区二区三区 | 日韩www | 久久精品视| 中国一级毛片 | 一级毛片免费播放 | 真人一级毛片 | 亚洲一区二区三区在线播放 | 天天天天天天天天干 | 免费的黄色大片 | 成人tv888| 国产一区二| 日韩色综合 | 国产九色视频 | 精品国产欧美一区二区三区成人 | 欧美二三区| 中文字幕二区 | 99综合在线 | 国产视频一区在线 | 亚洲精品一区二区三区蜜桃下载 | 黄a在线看| 色国产一区 | 在线视频一区二区三区 | 国产在线一区二区三区 | 亚洲 欧美 综合 | 国产日韩在线视频 | 国产精品久久久久免费视频 | 夜夜撸av| 午夜影视剧场 | 不卡av在线 | 二区在线视频 | 久久综合久色欧美综合狠狠 | 97人人看 | 精品一区二区三区四区五区 | 蜜桃av一区二区三区 | 欧美午夜视频在线观看 | 国产成人精品午夜 | 久久久久久久久久国产 |