日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=(x2-2ax)ex,x∈R,a∈R.

(1)當a≥0時,f(x)是否存在最小值?若存在,請求出相應x的值;若不存在,請說明理由.

(2)當x∈[-2,]時,若f(x)的圖象上存在兩點M,N,使得直線MN⊥y軸,求實數a的取值范圍.

解析:(1)∵f′(x)=(x2+2x-2ax-2a)ex,令f′(x)=0,即x2+2(1-a)x-2a=0,

解得x1=a-1,x2=a-1+.

∵a≥0,∴x1<-1,x2≥0.

當x<x1或x>x2時,f′(x)>0;當x1<x<x2時,f′(x)<0,

∴f(x)在(-∞,x1)和(x2,+∞)上單調遞增,在(x1,x2)上單調遞減.

∴f(x)在x1處取極大值,在x2處取得極小值.

又∵當x=0時,f(x)=0;

當x<0時,f(x)=x(x-2a)ex>0,

∴x∈(-∞,a-1-)時,f(x)∈(0,f(a-1-)).

x∈(a-1-,a-1+)時,

f(x)∈(f(a-1-),f(a-1+));

x∈(a-1+,+∞)時,f(x)∈(f(a-1+),+∞),

又f(a-1+)=(2-2)ea-1+≤0,

∴x=a-1+時,f(x)取得最小值.

(2)∵x∈[-2,]時f(x)的圖象上存在兩點M,N,使得直線MN⊥y軸,則x∈[-2,]時f(x)不是單調增函數,也不是單調減函數,

∴f′(x)=(x2+2x-2ax-2a)ex在x∈[-2,]上有正有負.

∴g(x)=x2+2x-2ax-2a在x∈[-2,]上有正有負.

而g(-1)=1-2+2a-2a=-1<0,

∴g(x)=x2+2x-2ax-2a在x∈[-2,]上有正有負的充要條件為

g(-2)g()<0或

由g(-2)g()<0,解得a>0或a<;

解得a不存在.

綜上,a的取值范圍是a>0或a<.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數,則實數a的取值范圍是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
|x-1|-a
1-x2
是奇函數.則實數a的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x-1x+a
+ln(x+1)
,其中實數a≠1.
(1)若a=2,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調性.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲精品一区二区三区麻豆 | 中文字幕亚洲在线 | 热久久这里只有精品 | 中文字幕_第2页_高清免费在线 | 在线观看免费毛片视频 | 国产高清一区 | 毛片aaaaa| www.亚洲 | 亚洲视频在线看 | 久久一区 | 日韩av电影在线播放 | 综合久久综合久久 | h在线视频 | av在线免费播放 | 亚洲午夜视频在线观看 | 亚洲一区二区三区爽爽爽爽爽 | 亚洲一区二区三区 | 毛片特级| 嫩草私人影院 | 久久亚洲一区 | 久久天天 | 日韩成人av在线 | 日韩欧美综合 | 狠狠色噜噜狠狠狠狠2018 | 在线免费国产视频 | 精品自拍视频 | 欧美午夜精品一区二区三区电影 | 日批的视频 | 欧美大粗吊男男1069 | 二区免费 | 天天干狠狠干 | 日韩精品免费在线视频 | 国产综合精品一区二区三区 | 男女视频网站 | 欧美黄视频在线观看 | 国内精品亚洲 | 高清一区二区三区 | 久草资源在线视频 | 欧美亚洲国产精品 | 一区免费看 | 免费看国产一级特黄aaaa大片 |