(本題滿分12分)
已知橢圓及直線
.
(1)當為何值時,直線與橢圓有公共點?
(2)若直線被橢圓截得的弦長為,求直線的方程.
科目:高中數學 來源: 題型:解答題
已知曲線所圍成的封閉圖形的面積為
,曲線
的內切圓半徑為
.記
為以曲線
與坐標軸的交點為頂點的橢圓.
(1)求橢圓的標準方程;
(2)設是過橢圓
中心的任意弦,
是線段
的垂直平分線.
是
上異于橢圓中心的點.
(i)若(
為坐標原點),當點
在橢圓
上運動時,求點
的軌跡方程;
(ii)若是
與橢圓
的交點,求
的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,斜率為1的直線過拋物線的焦點F,與拋物線交于兩點A,B,
(1)若|AB|=8,求拋物線的方程;
(2)設C為拋物線弧AB上的動點(不包括A,B兩點),求的面積S的最大值;
(3)設P是拋物線上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分13分)
設點P是圓x2 +y2 =4上任意一點,由點P向x軸作垂線PP0,垂足為Po,且.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設直線:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點A,B.
(1)若直線OA,AB,OB的斜率成等比數列,求實數m的取值范圍;
(2)若以AB為直徑的圓過曲線C與x軸正半軸的交點Q,求證:直線過定點(Q點除外),并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)已知橢圓的離心率為
,且橢圓上一點與橢圓的兩個焦點構成的三角形周長為
.
(1)求橢圓的方程;
(2)設直線與橢圓
交于
兩點,且以
為直徑的圓過橢圓的右頂點
,
求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)雙曲線的離心率為2,坐標原點到
直線AB的距離為,其中A
,B
.
(1)求雙曲線的方程;
(2)若是雙曲線虛軸在
軸正半軸上的端點,過
作直線與雙曲線交于
兩點,求
時,直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知:橢圓的中心為
,長軸的兩個端點為
,右焦點為
,
.若橢圓
經過點
,
在
上的射影為
,且△
的面積為5.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知圓:
=1,直線
=1,試證明:當點
在橢圓
上
運動時,直線與圓
恒相交;并求直線
被圓
截得的弦長的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com