(本小題滿分12分)
如圖,正方形所在平面與平面四邊形
所在平面互相垂直,△
是等腰直角三角形,
。
(Ⅰ)求證:;
(Ⅱ)設線段、
的中點分別為
、
,求證:
∥
(Ⅲ)求二面角的大小。
(Ⅰ)證明見解析。
(Ⅱ)證明見解析。
(Ⅲ)
解法一:
(Ⅰ)因為平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,
所以BC⊥平面ABEF.
所以BC⊥EF.
因為⊿ABE為等腰直角三角形,AB=AE,
所以∠AEB=45°,
又因為∠AEF=45,
所以∠FEB=90°,即EF⊥BE.
因為BC平面ABCD, BE
平面BCE,
BC∩BE=B
所以…………………………………………6分
(Ⅱ)取BE的中點N,連結CN,MN,則MNPC
∴ PMNC為平行四邊形,所以PM∥CN.
∵ CN在平面BCE內,PM不在平面BCE內,
∴ PM∥平面BCE.………………………………………8分
(Ⅲ)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD.
作FG⊥AB,交BA的延長線于G,則FG∥EA.從而FG⊥平面ABCD,
作GH⊥BD于H,連結FH,則由三垂線定理知BD⊥FH.
∴ ∠FHG為二面角F-BD-A的平面角.
∵ FA=FE,∠AEF=45°,
∠AEF=90°, ∠FAG=45°.
設AB=1,則AE=1,AF=,則
在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+=
,
,
在Rt⊿FGH中, ,
∴二面角的大小為
……………………………12分
解法二:
因等腰直角三角形,
,所以
又因為平面,所以
⊥平面
,所以
即兩兩垂直;如圖建立空間直角坐標系,
(Ⅰ)設,則
,
∵,∴
,
從而 w.w.w.k.s.5.u.c.o.m
,
于是,
∴⊥
,
⊥
∵平面
,
平面
,
∴
(Ⅱ),從而
于是
∴⊥
,又
⊥平面
,直線
不在平面
內,
故∥平面
(Ⅲ)設平面的一個法向量為
,并設
=(
即
取,則
,
,從而
=(1,1,3)
取平面D的一個法向量為
w.w.w.k.s.5.u.c.o.m
故二面角的大小為
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com