【題目】已知點M(x,y)滿足
(1)求點M的軌跡E的方程;
(2)設過點N(﹣1,0)的直線l與曲線E交于A,B兩點,若△OAB的面積為(O為坐標原點).求直線l的方程.
科目:高中數學 來源: 題型:
【題目】在直角△ABC中,AC=,BC=1,點D是斜邊AB上的動點,將△BCD沿著CD翻折至△B'CD,使得點B'在平面ACD內的射影H恰好落在線段CD上,則翻折后|AB'|的最小值是_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】年年底,某城市地鐵交通建設項目已經基本完成,為了解市民對該項目的滿意度,分別從不同地鐵站點隨機抽取若干市民對該項目進行評分(滿分
分),繪制如下頻率分布直方圖,并將分數從低到高分為四個等級:
滿意度評分 | 低于60分 | 60分到79分 | 80分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 基本滿意 | 滿意 | 非常滿意 |
已知滿意度等級為基本滿意的有人.
(1)求頻率分布于直方圖中的值,及評分等級不滿意的人數;
(2)相關部門對項目進行驗收,驗收的硬性指標是:市民對該項目的滿意指數不低于,否則該項目需進行整改,根據你所學的統計知識,判斷該項目能否通過驗收,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業為了解下屬某部門對本企業職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區間為
(1)求頻率分布直方圖中的值;
(2)估計該企業的職工對該部門評分不低于80的概率;
(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)3個人坐在有八個座位的一排椅子上,若每個人的左右兩邊都要有空位,則不同坐法的種數為多少?
(2)某高校現有10個保送上大學的名額分配給7所高中學校,若每所高中學校至少有1個名額,則名額分配的方法共有多少種?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等差數列{an}的前n項和為Sn,a2+a15=17,S10=55.數列{bn}滿足an=log2bn.
(1)求數列{bn}的通項公式;
(2)若數列{an+bn}的前n項和Tn滿足Tn=S32+18,求n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結論
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角是60°.
其中正確結論的序號是________
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com