(本小題滿分12分)設圓C:,此圓與拋物線
有四個不同的交點,若在
軸上方的兩交點分別為
,
,坐標原點為
,
的面積為
。
(1)求實數的取值范圍;
(2)求關于
的函數
的表達式及
的取值范圍。
科目:高中數學 來源: 題型:解答題
直線與橢圓
交于
,
兩點,已知
,
,若
且橢圓的離心率
,又橢圓經過點
,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點
(
為半焦距),求直線
的斜率
的值;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設,
分別是橢圓E:
+
=1(0﹤b﹤1)的左、右焦點,過
的直線
與E相交于A、B兩點,且
,
,
成等差數列。
(Ⅰ)求;
(Ⅱ)若直線的斜率為1,求b的值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在坐標原點,焦點在軸上的橢圓過點
,且它的離心率
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)與圓相切的直線
交橢圓于
兩點,若橢圓上一點
滿足
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,設拋物線方程為,
為直線
上任意一點,過
引拋物線的切線,切點分別為
.
(1)求證:三點的橫坐標成等差數列;
(2)已知當點的坐標為
時,
.求此時拋物線的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點為
軸上的動點,點
為
軸上的動點,點
為定點,且滿足
,
.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)過點且斜率為
的直線
與曲線
交于兩點
,
,試判斷在
軸上是否存在點
,使得
成立,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓左、右焦點分別為F1、F2,點
,點F2在線段PF1的中垂線上。
(1)求橢圓C的方程;
(2)設直線與橢圓C交于M、N兩點,直線F2M與F2N的傾斜角互補,求證:直線
過定點,并求該定點的坐標。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的右焦點
,且
,設短軸的一個端點為
,原點
到直線
的距離為
,過原點和
軸不重合的直線與橢圓
相交于
兩點,且
.
(1)求橢圓的方程;
(2)是否存在過點的直線
與橢圓
相交于不同的兩點
,且使得
成立?若存在,試求出直線
的方程;若不存在,請說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com