日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設函數fn(θ)=sinnθ+(-1)ncosnθ,0,其中n為正整數.
(1)判斷函數f1(θ)、f3(θ)的單調性,并就f1(θ)的情形證明你的結論;
(2)證明:2f6(θ)-f4(θ)=(cos4θ-sin4θ)(cos2θ-sin2θ);
(3)對于任意給定的正奇數n,求函數fn(θ)的最大值和最小值.
【答案】分析:(1)設 θ1<θ2,θ1、θ2∈[0,],根據三角函數的特點判斷f1(θ1)-f1(θ2)=(sinθ1-sinθ2)+(cosθ2-cosθ1)<0,從而得出結論;
(2)首先利用余弦的二倍角公式化簡原式的左邊等于cos22θ,同理原式右邊也等于cos22θ,從而證明結論.
(3)當n=1時,f1(θ)在[0,]上單調遞增,求出最值;當n=3時,f3(θ)在[0,]上為單調遞增,求出最值;正奇數n≥5的情形,首先根據定義判斷出函數的單調遞增,從而得出fn(θ)的最大值為fn)=0,最小值為fn(0)=-1.
解答:解:(1)f1(θ)、f3(θ)在0,上均為單調遞增的函數.
對于函數f1(θ)=sinθ-cosθ,設 θ1<θ2,θ1、θ2∈[0,],則
f1(θ1)-f1(θ2)=(sinθ1-sinθ2)+(cosθ2-cosθ1),
∵sinθ1<sinθ2,cosθ2<cosθ1
∴f1(θ1)<f1(θ2)函數f1(θ)在[0,]上單調遞增.
(2)∵原式左邊=2(sin6θ+cos6θ)-(sin4θ+cos4θ)
=2(sin2θ+cos2θ)(sin4θ-sin2θcos2θ+cos4θ)-(sin4θ+cos4θ)
=1-sin22θ=cos22θ.
又∵原式右邊=(cos2θ-sin2θ)2=cos2
∴2f6(θ)-f4(θ)=(cos4θ-sin4θ)(cos2θ-sin2θ).
(3)當n=1時,函數f1(θ)在[0,]上單調遞增,
f1(θ)的最大值為f1)=0,最小值為f1(0)=-1.
當n=3時,函數f3(θ)在[0,]上為單調遞增.
∴f3(θ)的最大值為f3)=0,最小值為f3(0)=-1.
下面討論正奇數n≥5的情形:對任意θ1、θ2∈[0,],且θ1<θ2
∵fn(θ1)-fn(θ2)=(sinnθ1-sinnθ2)+(cosnθ2-cosnθ1),
以及 0≤sinθ1<sinθ2<1  0≤cosθ2<cosθ1<1,
∴sinnθ1<sinnθ2 cosnθ2<cosnθ1,從而fn(θ1)<fn(θ2).
∴fn(θ)在[0,]上為單調遞增,
則fn(θ)的最大值為fn)=0,最小值為fn(0)=-1.
綜上所述,當n為奇數時,函數fn(θ)的最大值為0,最小值為-1.
點評:本題考查了三角函數的最值,函數單調性的判定以及同角三角函數的基本關系,一般根據定義判斷函數的單調性,此題有一定難度.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,F為橢圓的右焦點,M,N兩點在橢圓C上,且
MF
FN
(λ>0)
,定點A(-4,0).
(1)若λ=1時,有
AM
AN
=
106
3
,求橢圓C的方程;
(2)在條件(1)所確定的橢圓C下,當動直線MN斜率為k,且設s=1+3k2時,試求
AM
AN
tan∠MAN
關于S的函數表達式f(s)的最大值,以及此時M,N兩點所在的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,矩形ABCD的邊長AB=6,BC=4,點F在DC上,DF=2.動點M、N分別從點D、B同時出發,沿射線DA、BA的方向運動,當第二次MF=MN時M、N兩點同時停止運動.連接FM、FN,當F、N、M不在同一直線時,可得△FMN,設動點M、N的速度都是1個單位/秒,M、N運動的時間為t秒.試解答下列問題:
(1)求F、M、N三點共線時t的值;
(2)設△FMN的面積為S,寫出S與t的函數關系式.并求出t為何值時S的值最大.
(3)試問t為何值時,△FMN為直角三角形?

查看答案和解析>>

科目:高中數學 來源:2012-2013學年重慶94中高三(上)第五次月考數學試卷(解析版) 題型:解答題

如圖所示,矩形ABCD的邊長AB=6,BC=4,點F在DC上,DF=2.動點M、N分別從點D、B同時出發,沿射線DA、BA的方向運動,當第二次MF=MN時M、N兩點同時停止運動.連接FM、FN,當F、N、M不在同一直線時,可得△FMN,設動點M、N的速度都是1個單位/秒,M、N運動的時間為t秒.試解答下列問題:
(1)求F、M、N三點共線時t的值;
(2)設△FMN的面積為S,寫出S與t的函數關系式.并求出t為何值時S的值最大.
(3)試問t為何值時,△FMN為直角三角形?

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品自拍视频 | 久久久久综合狠狠综合日本高清 | 国产乱老熟视频网88av | 精品九九 | 欧美在线免费观看 | www.成人在线视频 | 黄色在线视频网 | 天天艹逼 | 欧美日本韩国一区二区三区 | 国产精品乱码一区二区三区 | 日韩一区二区中文字幕 | 在线看av网址 | av成人在线观看 | 日韩成人在线观看视频 | 97久久久 | 午夜精品久久久久 | 日韩一区二区在线观看 | 久久久国产精品入口麻豆 | 国产福利在线观看 | 欧美一区高清 | 成人毛片在线视频 | 国产精品成av人在线视午夜片 | 午夜精品视频 | 三级特黄特色视频 | 在线视频三区 | 亚洲视频在线播放 | 狠狠做深爱婷婷综合一区 | 国产成人影院 | 国产久精品 | 99精品欧美一区二区三区 | 久久久精品日本 | 黄色网址免费在线播放 | 国产精品99久久久久久大便 | 午夜一区二区在线观看 | 午夜激情网站 | 国产一区二区视频在线观看 | 网站av | 国产精品久久久久久久久免费高清 | 久久久久久久久久久久免费 | 国产精品亚洲天堂 | 国产99在线播放 |