日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知偶函數f(x)(x∈R),當x∈(-2,0]時,f(x)=-x(2+x),當x∈[2,+∞)時,f(x)=(x-2)(a-x)(a∈R).
關于偶函數f(x)的圖象G和直線l:y=m(m∈R)的3個命題如下:
①當a=2,m=0時,直線l與圖象G恰有3個公共點;
②當a=3,m=時,直線l與圖象G恰有6個公共點;
③?m∈(1,+∞),?a∈(4,+∞),使得直線l與圖象G交于4個點,且相鄰點之間的距離相等.
其中正確命題的序號是( )
A.①②
B.①③
C.②③
D.①②③
【答案】分析:可求出函數在x∈[0,+∞)時的解析式,令其等于0,解方程可得根,由對稱性可得根的個數,可判①②正確;③同理可得根個數為4,可得4個點的坐標,由x3-x2=x4-x3,化簡可得a的范圍,取a的值即可.
解答:解:設x∈[0,2),則-x∈(-2,0],故f(-x)=x(2-x),
由函數為偶函數可知,當x∈[0,2)時,f(x)=x(2-x),
故當x∈[0,+∞)時,f(x)=
①當a=2,m=0時,x∈[0,+∞)時,f(x)=
令其等于0可得,x=0,或x=2,由函數圖象的對稱性可知,
此時直線l與圖象G恰有3個公共點-2,0,2,故①正確;
②當a=3,m=時,x∈[0,+∞)時,f(x)=
令其等于可得x=,或x=,或x=,由函數圖象的對稱性可知,
此時直線l與圖象G恰有6個公共點-,-,-,故②正確;
③?m∈(1,+∞),令f(x)==m,
∵當x∈[0,2)時,f(x)=x(2-x)=-(x-1)2+1≤1,
故只能讓(2-x)(a-x)=m,(m>1),當△=(a-2)2-4m>0,
即(a-2)2>4,即a>4,或a<0時,
可解得x=,或x=
故由函數圖象的對稱性可知直線l與圖象G交于4個點,由小到大排列為:x1=
x2=,x3=,x4=
而x4-x3=,x3-x2=a+2-
由x3-x2=x4-x3,化簡可得3a2-20a+12=16m>16,解得a<,或a>
故可取a=8>,當然滿足a∈(4,+∞),使距離相等,
故對?m∈(1,+∞),?a=8∈(4,+∞),使得直線l與圖象G交于4個點,且相鄰點之間的距離相等,故③正確.
故選D
點評:本題考查命題真假的判斷,涉及函數的奇偶性和根的個數的判斷,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

1、已知偶函數f(x)在(-∞,0)上單調遞增,對于任意x1<0,x2>0,若|x1|<|x2|,則有(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知偶函數f(x)對?x∈R滿足f(2+x)=f(2-x),且當-2≤x≤0時,f(x)=log2(1-x),則f(2003)的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知偶函數f(x)在[0,+∞)上是減函數,求不等式f(2x+5)>f(x2+2)的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知偶函數f(x)在區間[0,1)上單調遞減,則滿足f(2x-1)>f(x)的x的范圍是
1
3
,1)
1
3
,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•綿陽一模)已知偶函數f(x)=x
4n-n22
(n∈Z)在(0,+∞)上是增函數,則n=
2
2

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 嫩草嫩草嫩草嫩草 | 成人性生活视频 | 成人免费网站 | 久久麻豆视频 | a毛片大片| 日韩欧美小视频 | 午夜在线影院 | 国产精品人人做人人爽人人添 | av网站免费看 | 激情婷婷网 | 国产深夜福利 | 亚洲成人免费在线 | 国产精品免费在线播放 | 午夜在线观看视频 | 亚洲精品视频在线播放 | 成人网在线 | 欧美亚洲在线观看 | 又色又爽又黄gif动态图 | 久久视频免费在线观看 | 日本精品国产 | 久久亚洲欧美 | 亚洲欧美视频 | 国产一级二级片 | 国产精品高清在线观看 | 一区二区三区在线观看视频 | 一区二区日韩 | 国产中文字幕在线播放 | 伊人成人在线 | 欧美视频区 | 在线亚洲一区 | 性巴克成人免费网站 | 精品欧美在线 | 91黄色大片 | 中国黄色1级片 | 国产成人亚洲精品自产在线 | 波多野结衣黄色 | 亚洲淫片 | 欧美高清视频在线观看mv | 激情五月婷婷丁香 | www.国产精品| 在线观看av免费 |