用數學歸納法證明:1+2+22+…2n﹣1=2n﹣1(n∈N)的過程中,第二步假設當n=k時等式成立,則當n=k+1時應得到( )
A.1+2+22+…+2k﹣2+2k+1﹣1
B.1+2+22+…+2k+2k+1=2k﹣1+2k+1
C.1+2+22+…+2k﹣1+2k+1=2k+1﹣1
D.1+2+22+…+2k﹣1+2k=2k﹣1+2k
科目:高中數學 來源:[同步]2014年新人教A版選修4-6 2.1同余練習卷(解析版) 題型:選擇題
(2013•梅州二模)若m是一個給定的正整數,如果兩個整數a、b用m除所得的余數相同,則稱a與b對m校同余,記作a≡b[mod(m)],例如1≡13[mod(4)],若22012≡r[mod(7)],則r可能為( )
A.5 B.4 C.3 D.2
查看答案和解析>>
科目:高中數學 來源:[同步]2014年新人教A版選修4-6 1.1整除練習卷(解析版) 題型:選擇題
下列各數中最小的數是( )
A.85(9) B.210(6) C.1000(4) D.11111(2)
查看答案和解析>>
科目:高中數學 來源:[同步]2014年新人教A版選修4-5 4.2數學歸納法證明不等式舉例(解析版) 題型:選擇題
用數學歸納法證明不等式成立,起始值至少應取為( )
A.7 B.8 C.9 D.10
查看答案和解析>>
科目:高中數學 來源:[同步]2014年新人教A版選修4-5 4.1數學歸納法練習卷(解析版) 題型:選擇題
用數學歸納法證明“當n為正奇數時,xn+yn能被x+y整除”,第二步歸納假設應寫成( )
A.假設n=2k+1(k∈N*)正確,再推n=2k+3正確
B.假設n=2k﹣1(k∈N*)正確,再推n=2k+1正確
C.假設n=k(k∈N*)正確,再推n=k+1正確
D.假設n=k(k≥1)正確,再推n=k+2正確
查看答案和解析>>
科目:高中數學 來源:[同步]2014年新人教A版選修4-5 4.1數學歸納法練習卷(解析版) 題型:選擇題
用數學歸納法證明1+2+3+…+(3n+1)=,則當n=k+1時左端應在n=k的基礎上加上( )
A.(3k+2)
B.(3k+4)
C.(3k+2)+(3k+3)
D.(3k+2)+(3k+3)+(3k+4)
查看答案和解析>>
科目:高中數學 來源:[同步]2014年新人教A版選修4-5 3.1二維形式柯西不等式練習卷(解析版) 題型:填空題
(2014•陜西三模)已知a、b、c、d均為正數,且a2+b2=4,cd=1,則(a2c2+b2d2)(b2c2+a2d2)的最小值為 .
查看答案和解析>>
科目:高中數學 來源:[同步]2014年新人教A版選修4-5 2.2綜合法與分析法練習卷(解析版) 題型:填空題
下列表述:
①綜合法是執因導果法;
②綜合法是順推法;
③分析法是執果索因法;
④分析法是間接證法;
⑤反證法是逆推法.
正確的語句有是 (填序號).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com