【題目】已知函數(其中
)的圖象如圖所示:
(1)求函數的解析式及其對稱軸的方程;
(2)當時,方程
有兩個不等的實根
,求實數
的取值范圍,并求此時
的值.
科目:高中數學 來源: 題型:
【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取m個作為樣本,稱出它們的重量(單位:克),重量分組區間為,
,
,
,由此得到樣本的重量頻率分布直方圖(如圖).
(1)根據樣本數據,試估計盒子中小球重量的中位數與平均值(精確到0.01);
(2)從盒子裝的大量小球中,隨機抽取3個小球,其中重量在內的小球個數為
,求
的分布列和數學期望。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓 =1(a>b>0)的左焦點為F,離心率為
,過點F且與x軸垂直的直線被橢圓截得的線段長為
.
(1)求橢圓的方程;
(2)設A,B分別為橢圓的左,右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若 =8,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數 (a∈R,e為自然對數的底數),若曲線y=sinx上存在點(x0 , y0)使得f(f(y0))=y0 , 則a的取值范圍是( )
A.[1,e]
B.[e﹣1﹣1,1]
C.[1,e+1]
D.[e﹣1﹣1,e+1]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為
,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的兩個焦點分別為F1(﹣1,0),F2(1,0),且橢圓C經過點
.
(1)求橢圓C的離心率:
(2)設過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且 ,求點Q的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于直線
對稱,且圓心在
軸上.
(1)求的標準方程;
(2)已經動點在直線
上,過點
引
的兩條切線
、
,切點分別為
.
①記四邊形的面積為
,求
的最小值;
②證明直線恒過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,某公路AB一側有一塊空地△OAB,其中OA=3km,OB=3km,∠AOB=90°.當地政府擬在中間開挖一個人工湖△OMN,其中M,N都在邊AB上(M,N不與A,B重合,M在A,N之間),且∠MON=30°.
(1)若M在距離A點2km處,求點M,N之間的距離;
(2)為節省投入資金,人工湖△OMN的面積要盡可能小.試確定M的位置,使△OMN的面積最小,并求出最小面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com