日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】已知F1(﹣c,0)、F2(c、0)分別是橢圓G: + =1(0<b<a<3)的左、右焦點,點P(2, )是橢圓G上一點,且|PF1|﹣|PF2|=a.
(1)求橢圓G的方程;
(2)設直線l與橢圓G相交于A、B兩點,若 ,其中O為坐標原點,判斷O到直線l的距離是否為定值?若是,求出該定值,若不是,請說明理由.

【答案】
(1)解:由橢圓的定義可知:|PF1|+|PF2|=2a.由|PF1|﹣|PF2|=a.

∴丨PF1丨= a=3|PF2|,

=3 ,化簡得:c2﹣5c+6=0,

由c<a<3,

∴c=2,

則丨PF1丨=3 = a,則a=2

b2=a2﹣c2=4,

∴橢圓的標準方程為:


(2)解:由題意可知,直線l不過原點,設A(x1,x2),B(x2,y2),

①當直線l⊥x軸,直線l的方程x=m,(m≠0),且﹣2 <m<2

則x1=m,y1= ,x2=m,y2=﹣

∴x1x2+y1y2=0,即m2﹣(4﹣ )=0,

解得:m=±

故直線l的方程為x=±

∴原點O到直線l的距離d=

②當直線AB的斜率存在時,設直線AB的方程為y=kx+n,

,消去y整理得:(1+2k2)x2+4knx+2n2﹣8=0,

x1+x2=﹣ ,x1x2=

則y1y2=(kx1+n)(kx2+n)=k2x1x2+kn(x1+x2)+n2=

∴x1x2+y1y2=0,故 + =0,

整理得:3n2﹣8k2﹣8=0,即3n2=8k2+8,①

則原點O到直線l的距離d=

∴d2=( 2= = ,②

將①代入②,則d2= =

∴d=

綜上可知:點O到直線l的距離為定值


【解析】(1)根據橢圓的定義,求得丨PF1丨= a=3|PF2|,根據點到直線的距離公式,即可求得c的值,則求得a的值,b2=a2﹣c2=4,即可求得橢圓方程;(2)當直線l⊥x軸,將直線x=m代入橢圓方程,求得A和B點坐標,由向量數量積的坐標運算,即可求得m的值,求得O到直線l的距離;當直線AB的斜率存在時,設直線方程,代入橢圓方程,由韋達定理及向量數量積的坐標運算,點到直線的距離公式,即可求得O到直線l的距離為定值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】我國古代數學著作《九章算術》有如下問題:“今有器中米,不知其數,前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為(
A.4.5
B.6
C.7.5
D.9

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:(x﹣6)2+(y﹣8)2=1和兩點A(﹣m,0),B(m,0)(m>0),若對圓上任意一點P,都有∠APB<90°,則m的取值范圍是(
A.(9,10)
B.(1,9)
C.(0,9)
D.(9,11)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (a∈R),曲線y=f(x)在點(1,f(1))處的切線與直線x+y+1=0垂直. (Ⅰ)試比較20162017與20172016的大小,并說明理由;
(Ⅱ)若函數g(x)=f(x)﹣k有兩個不同的零點x1 , x2 , 證明:x1x2>e2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若曲線f(x)= (e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x<0)上分別存在點A、B,使得△OAB是以原點O為直角頂點的直角三角形,且斜邊AB的中點在y軸上,則實數a的取值范圍是(
A.(e,e2
B.(e,
C.(1,e2
D.[1,e)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,則f(x)=sin(2x+ )+cos(2x+ ),則(
A.y=f(x)在(0, )單調遞增,其圖象關于直線x= 對稱
B.y=f(x)在(0, )單調遞增,其圖象關于直線x= 對稱
C.y=f(x)在(0, )單調遞減,其圖象關于直線x= 對稱
D.y=f(x)在(0, )單調遞減,其圖象關于直線x= 對稱

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數方程為 (t是參數),以原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=8cos(θ﹣ ).
(1)求曲線C2的直角坐標方程,并指出其表示何種曲線;
(2)若曲線C1與曲線C2交于A,B兩點,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,已知點R的極坐標為(2 ),曲線C的參數方程為 (θ為參數).
(1)求點R的直角坐標,化曲線C的參數方程為普通方程;
(2)設P為曲線C上一動點,以PR為對角線的矩形PQRS的一邊垂直于極軸,求矩形PQRS周長的最小值,及此時P點的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC,PC于D,E兩點,PB=BC,PA=AB=1.

(1)求證:PC⊥平面BDE;
(2)求直線BE與平面PAC所成角的余弦值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品一码二码三码在线 | 日韩一区在线观看视频 | 午夜男人的天堂 | 久久久中文字幕 | 91.成人天堂一区 | 精品无码久久久久久国产 | 国产日韩欧美在线 | 免费亚洲婷婷 | 国产天堂一区二区三区 | 欧美一区二区视频 | 噜噜噜在线 | 激情超碰 | 欧美久久精品 | 中文字幕亚洲一区 | 国产精品成人免费视频 | 特a级片| 精品成人 | 成人一区二区三区在线观看 | 超碰导航| 国产小视频免费在线观看 | 国产乱肥老妇国产一区二 | 午夜理伦三级 | 久久亚洲一区二区三区四区 | 一区二区在线视频 | 国产无遮挡呻吟吸乳视频 | 婷婷精品在线 | 一级视频黄色 | 国产一区二区影院 | 亚洲精品乱 | 黄色大片在线播放 | 国产精品久久久一区二区三区 | 国产亚洲欧美在线 | www黄| 午夜在线视频 | 国产亚洲精品美女久久久久久久久久 | 国产精品久久久久久妇女6080 | 国产精品亚洲视频 | 黄色电影在线免费观看 | 精品综合久久久 | 男女做网站 | 亚洲免费视频网站 |