【題目】如圖①,在五邊形中,
,
,
,
,將
沿
折起到
的位置,得到如圖②所示的四棱錐
,
為線段
的中點,且
平面
.
(1)求證:平面
.
(2)若直線與
所成角的正切值為
,求直線
與平面
所成角的正弦值.
【答案】(1)見證明;(2)
【解析】
(1)取的中點
,連接
,
,又
為
的中點,得到四邊形
為平行四邊形,從而應用線面平行的判定定理證得結果.
(2),可得
為直線
與
所成的角,可得
,
,設
,則
,
,取
的中點O,連接PO,過O作AB的平行線,可建立如圖所示的空間直角坐標系O-xyz,設
為平面PBD的法向量,則
,利用
,即可得出.
(1)證明:取的中點
,連接
,
.
又為
的中點,所以
,
.
又,
,所以
,
.
則四邊形為平行四邊形,所以
.
因為平面
,
平面
,
所以平面
.
(2)解:因為平面
,
,
所以平面
,所以
,
.
由,即
及
為
的中點,可得
為等邊三角形,所以
.
又,所以
,即
.
因為平面
,
平面
,
,所以
平面
.
又平面
,所以平面
平面
.
因為,所以
即為直線
與
所成的角,
所以,所以
.
設,則
,
.
取的中點
,連接
,過
作
交
于點
,則
,
,
兩兩垂直.
以為坐標原點,
,
,
的方向為
軸,
軸,
軸的正方向,建立空間直角坐標系,如圖所示.
則,
,
,
,所以
.
所以,
,
.
設平面的法向量為
,
則,
令,則
.
因為.
所以直線與平面
所成角的正弦值為
.
科目:高中數(shù)學 來源: 題型:
【題目】
某位同學進行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關系進行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫(°C)與該奶茶店的這種飲料銷量
(杯),得到如下數(shù)據(jù):
日 期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均氣溫 | 9 | 10 | 12 | 11 | 8 |
銷量 | 23 | 25 | 30 | 26 | 21 |
(1)若從這五組數(shù)據(jù)中隨機抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出y關于x的線性回歸方程.
(參考公式:.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發(fā)了廣大群眾的思考——如何做一個文明的乘客.全國各地大部分社區(qū)組織居民學習了文明乘車規(guī)范.社區(qū)委員會針對居民的學習結果進行了相關的問卷調(diào)查,并將得到的分數(shù)整理成如圖所示的統(tǒng)計圖.
(Ⅰ)求得分在上的頻率;
(Ⅱ)求社區(qū)居民問卷調(diào)查的平均得分的估計值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(Ⅲ)以頻率估計概率,若在全部參與學習的居民中隨機抽取5人參加問卷調(diào)查,記得分在間的人數(shù)為
,求
的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如上圖所示,在正方體中,
分別是棱
的中點,
的頂點
在棱
與棱
上運動,有以下四個命題:
A.平面
; B.平面
⊥平面
;
C.
在底面
上的射影圖形的面積為定值;
D.
在側面
上的射影圖形是三角形.其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個結論:
①命題“,
”的否定是“
,
”;
②命題“若,則
且
”的否定是“若
,則
”;
③命題“若,則
或
”的否命題是“若
,則
或
”;
④若“是假命題,
是真命題”,則命題
,
一真一假.
其中正確結論的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率為
,且過點P
。
(1)求橢圓的標準方程;
(2)已知斜率為1的直線l過橢圓的右焦點F交橢圓于A.B兩點,求弦AB的長。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某旅游愛好者計劃從3個亞洲國家A1,A2,A3和3個歐洲國家B1,B2,B3中選擇2個國家去旅游.
(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左焦點在拋物線
的準線上,且橢圓的短軸長為2,
分別為橢圓的左,右焦點,
分別為橢圓的左,右頂點,設點
在第一象限,且
軸,連接
交橢圓于點
,直線
的斜率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若三角形的面積等于四邊形
的面積,求
的值;
(Ⅲ)設點為
的中點,射線
(
為原點)與橢圓交于點
,滿足
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,某公園內(nèi)有兩條道路,
,現(xiàn)計劃在
上選擇一點
,新建道路
,并把
所在的區(qū)域改造成綠化區(qū)域.已知
,
.
(1)若綠化區(qū)域的面積為1
,求道路
的長度;
(2)若綠化區(qū)域改造成本為10萬元/
,新建道路
成本為10萬元/
.設
(
),當
為何值時,該計劃所需總費用最小?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com