分析 求出$\overrightarrow{a}•\overrightarrow{c}$,再計算cos<$\overrightarrow{a},\overrightarrow{c}$>即可得出答案.
解答 解:∵($\overrightarrow{c}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=$\overrightarrow{a}•\overrightarrow{c}$-$\overrightarrow{a}•\overrightarrow{b}$=$\frac{15}{2}$,$\overrightarrow{a}•\overrightarrow{b}$=-2-8=-10,
∴$\overrightarrow{a}•\overrightarrow{c}$=$\frac{15}{2}$-10=-$\frac{5}{2}$,
∴cos<$\overrightarrow{a},\overrightarrow{c}$>=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}||\overrightarrow{c}|}$=$\frac{-\frac{5}{2}}{\sqrt{5}×\sqrt{5}}$=-$\frac{1}{2}$,
由0≤<$\overrightarrow{a},\overrightarrow{c}$>≤π,
∴$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為$\frac{2π}{3}$.
故答案為$\frac{2π}{3}$.
點評 本題考查了平面向量的數量積運算,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com