日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

13.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且關(guān)于x的方程x2-anx-an=0有一根為Sn-1.
(1)求出S1,S2,S3
(2)猜想{Sn}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

分析 (1)由題設(shè)求出S1=$\frac{1}{2}$,S2=$\frac{2}{3}$.S3=$\frac{3}{4}$.
(2)由此猜想Sn=$\frac{n}{n+1}$,n=1,2,3,….然后用數(shù)學(xué)歸納法證明這個(gè)結(jié)論.

解答 解:(1)當(dāng)n=1時(shí),x2-a1x-a1=0有一根為S1-1=a1-1,
于是(a1-1)2-a1(a1-1)-a1=0,解得a1=$\frac{1}{2}$.
當(dāng)n=2時(shí),x2-a2x-a2=0有一根為S2-1=a2-$\frac{1}{2}$,
于是(a2-$\frac{1}{2}$)2-a2(a2-$\frac{1}{2}$)-a2=0,
解得a2=$\frac{1}{6}$
由題設(shè)(Sn-1)2-an(Sn-1)-an=0,
Sn2-2Sn+1-anSn=0.
當(dāng)n≥2時(shí),an=Sn-Sn-1
代入上式得Sn-1Sn-2Sn+1=0.①
得S1=a1=$\frac{1}{2}$,S2=a1+a2=$\frac{1}{2}$+$\frac{1}{6}$=$\frac{2}{3}$.
由①可得S3=$\frac{3}{4}$.
(2)由(1)猜想Sn=$\frac{n}{n+1}$,n=1,2,3,….
下面用數(shù)學(xué)歸納法證明這個(gè)結(jié)論.
(i)n=1時(shí)已知結(jié)論成立.
(ii)假設(shè)n=k時(shí)結(jié)論成立,即Sk=$\frac{k}{k+1}$,
當(dāng)n=k+1時(shí),由①得Sk+1=$\frac{1}{2-{S}_{k}}$,可得Sk+1=$\frac{k+1}{k+2}$,故n=k+1時(shí)結(jié)論也成立.
綜上,由(i)、(ii)可知Sn=$\frac{n}{n+1}$對(duì)所有正整數(shù)n都成立.

點(diǎn)評(píng) 本題考查數(shù)列的綜合應(yīng)用,數(shù)學(xué)歸納法的應(yīng)用,考查邏輯推理能力以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.利用定積分的定義計(jì)算下列積分的值:${∫}_{0}^{4}$(2x+3)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若數(shù)列{an}是正項(xiàng)數(shù)列,且$\sqrt{a_1}+\sqrt{a_2}+…+\sqrt{a_n}={n^2}+3n$,則$\frac{a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+…+\frac{a_n}{n+1}$=2n2+6n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若如圖所示的程序框圖輸出的y=2,可輸入的x的值的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定積分${∫}_{0}^{\frac{π}{3}}$(x2+sinx)dx的值為(  )
A.$\frac{{π}^{3}}{81}$+$\frac{1}{2}$B.$\frac{{π}^{3}}{81}$-$\frac{1}{2}$C.$\frac{2π}{3}$-$\frac{1}{2}$D.$\frac{2π}{3}$+$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若sinx+cosx=$\frac{1}{5}$,0<x<π,則tanx的值是(  )
A.$\frac{4}{3}或-\frac{4}{3}$B.-$\frac{4}{3}$C.-$\frac{3}{4}$D.$\frac{3}{4}或-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右焦點(diǎn)為F,上頂點(diǎn)為A,若直線AF與圓O:${x^2}+{y^2}=\frac{{3{a^2}}}{16}$相切,則該橢圓的離心率為(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$或$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}滿足a3=7,a3+a7=26.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令${b_n}=\frac{2n}{{{a_n}-8}}$(n∈N*),求數(shù)列{bn}的最大項(xiàng)和最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\sqrt{x}$;
(1)求函數(shù)f(x)圖象在x=1處切線l的方程;
(2)求由曲線y=$\sqrt{x}$,直線l及y軸圍成圖形的面積.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 一区二区中文字幕 | 激情网在线观看 | 四虎影院最新网址 | 欧美一级在线 | 精品国产乱码久久久久久1区2区 | 国产精品久久久久毛片软件 | 狠狠操精品视频 | 欧美精品久久久久久久监狱 | 久久精品一 | 欧美亚洲成人一区 | 奇米色777欧美一区二区 | 青青草国产| 蜜桃久久久久久 | 九九热在线视频观看这里只有精品 | 激情视频区 | 国产午夜精品一区二区三区四区 | 97超碰在线免费 | 99re热精品视频 | 亚洲免费在线观看 | 国产一区成人 | 久操伊人 | 免费不卡视频 | 精品在线看 | 国产91久久精品一区二区 | 欧美视频区 | 9191在线| 国产一级视频 | 91麻豆精品国产91久久久久久久久 | 中文无码久久精品 | 狠狠色噜噜| 精品视频久久久 | 国产精品国产三级国产aⅴ无密码 | 青娱乐精品视频 | 一区二区三区在线播放 | 亚洲蜜桃精久久久久久久 | 亚洲97| 羞羞在线观看视频免费观看hd | 黄色一级电影 | 中文字幕高清在线 | 国产精品久久久久久久久久久久冷 | 日韩一区精品视频 |