已知橢圓的離心率為
,以原點
為圓心,橢圓的短半軸長為半徑的圓與直線
相切。
(1)求橢圓的標準方程;
(2)若直線與橢圓
相交于
、
兩點,且
,試判斷
的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
科目:高中數學 來源: 題型:解答題
如圖,已知,
,
,
分別是橢圓
的四個頂點,△
是一個邊長為2的等邊三角形,其外接圓為圓
.
(1)求橢圓及圓
的方程;
(2)若點是圓
劣弧
上一動點(點
異于端點
,
),直線
分別交線段
,橢圓
于點
,
,直線
與
交于點
.
(ⅰ)求的最大值;
(ⅱ)試問:,
兩點的橫坐標之和是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設拋物線:
的準線與
軸交于點
,焦點為
;橢圓
以
和
為焦點,離心率
.設
是
與
的一個交點.
(1)求橢圓的方程.
(2)直線過
的右焦點
,交
于
兩點,且
等于
的周長,求
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在坐標原點,焦點在軸上的橢圓過點
,且它的離心率
.
(1)求橢圓的標準方程;
(2)與圓相切的直線
交橢圓于
兩點,若橢圓上一點
滿足
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左右焦點分別為
、
,短軸兩個端點為
、
,且四邊形
是邊長為2的正方形.
(1)求橢圓方程;
(2)若分別是橢圓長軸的左右端點,動點
滿足
,連接
,交橢圓于點
,證明:
為定值;
(3)在(2)的條件下,試問軸上是否存在異于點
的定點
,使得以
為直徑的圓恒過直線
的交點?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,以原點為圓心,橢圓短半軸長為半徑的圓與直線
相切.
(1)求橢圓的標準方程;
(2)過右焦點作斜率為
的直線
交曲線
于
、
兩點,且
,又點
關于原點
的對稱點為點
,試問
、
、
、
四點是否共圓?若共圓,求出圓心坐標和半徑;若不共圓,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓的右焦點與拋物線
的焦點重合,過
且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點,且
(1)求橢圓的標準方程;
(2)設P為橢圓上一點,若過點M(2,0)的直線與橢圓相交于不同兩點A和B,且滿足
(O為坐標原點),求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率e=
,一條準線方程為x=
(1)求橢圓C的方程;
(2)設G、H為橢圓C上的兩個動點,O為坐標原點,且OG⊥OH.
①當直線OG的傾斜角為60°時,求△GOH的面積;
②是否存在以原點O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請求出該定圓方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com