(1)定義:若數列{dn}滿足dn+1=dn2,則稱{dn}為“平方遞推數列”.已知:數列{an}中,a1=2,an+1=2an2+2an.
①求證:數列{2an+1}是“平方遞推數列”;
②求證:數列{lg(2an+1)}是等比數列;
③求數列{an}的通項公式.
(2)已知:數列{bn}中,b1=1,bn+1=p2bn3+3pbn2+3bn(p>0),求:數列{bn}的通項.
【答案】
分析:(1)①依據“平方遞推數列”定義,結合條件a
n+1=2a
n2+2a
n,可證數列{2a
n+1}是“平方遞推數列”,
②令b
n=2a
n+1,進而有lgbn+1=2lgbn.從而可證數列{lgbn}為等比數列;
③由②知,數列{lg(2a
n+1)}是以lg5為首項,2為公比的等比數列,故可求
(2)兩邊同乘以p整理得,pb
n+1+1=(pb
n+1)
3,兩邊取對數得:lg(pb
n+1+1)=3lg(pb
n+1),故數列{lg(pb
n+1)}是以lg(p+1)為首項,3為公比的等比數列,從而可求數列{b
n}的通項.
解答:解:(1)①由條件a
n+1=2a
n2+2a
n,得2a
n+1+1=4a
n2+4a
n+1=(2a
n+1)
2.
∴數列{2a
n+1}是“平方遞推數列”;
②令b
n=2a
n+1,∴b
n+1=2a
n+1+1.則lgb
n+1=2lgb
n.
∵lg(2a
1+1)=lg5≠0,∴

=2.
數列{lg(2a
n+1)}是等比數列;
③由②知,lg(2a
n+1)=

,∴2a
n+1=

,∴a
n=

(2)兩邊同乘以p得,pb
n+1=p
3b
n3+3p
2b
n2+3pb
n(p>0),
∴pb
n+1+1=p
3b
n3+3p
2b
n2+3pb
n+1=(pb
n+1)
3,
兩邊取對數得:lg(pb
n+1+1)=3lg(pb
n+1)
∴數列{lg(pb
n+1)}是以lg(p+1)為首項,3為公比的等比數列
∴lg(pb
n+1)=3
n-1lg(p+1)
∴b
n=
點評:本題的考點是數列遞推式,主要考查新定義,將數列放到新情境中,關鍵是正確理解題意,挖掘問題的本質與隱含,解題時應注意構造新數列,從而使問題得解.