日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

已知F1、F2分別是橢圓數學公式+數學公式=1的左、右焦點,曲線C是坐標原點為頂點,以F2為焦點的拋物線,過點F1的直線l交曲線C于x軸上方兩個不同點P、Q,點P關于x軸的對稱點為M,設數學公式=數學公式
(I)若λ∈[2,4],求直線L的斜率k的取值范圍;
(II)求證:直線MQ過定點.

解:(I)令P(x1,y1),,Q(x2,y2),由題意,可設拋物線方程為 y2=2px
由橢圓的方程可得F1 (-1,0),F2 (1,0 )故p=2,曲線C的方程為 y2=4x,
由題意,可設PQ的方程 x=my-1 (m>0).把PQ的方程代入曲線C的方程 化簡可得 y2-4my+4=0,
∴y1+y2=4m,y1y2=4. 又 =,∴x1+1=λ(x2+1),y1=λy2,
=λ++2=4m2.λ∈[2,4],∴2+≤λ+≤4+≤m2
∴直線L的斜率k的取值范圍為[,].
(II)由于P,M關于X軸對稱,故M(x1,-y1),,
-=+==0,
∴M、Q、F2三點共線,故直線MQ過定點 F2 (1,0 ).
分析:(I)求出曲線C的方程,把PQ的方程 x=my-1 (m>0)代入曲線C的方程 化簡可得 y2-4my+4=0,利用根與系數的關系 及 =,可得 =λ++2=4m2,據λ∈[2,4],求得直線L的斜率 的范圍.
(II)根據-=0,可得 M、Q、F2三點共線,故直線MQ過定點 F2 (1,0 ).
點評:本題考查橢圓、拋物線的標準方程、簡單性質,三點共線的條件,根據題意,得到2+≤λ+≤4+,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•湖南)已知F1,F2分別是橢圓E:
x25
+y2=1
的左、右焦點F1,F2關于直線x+y-2=0的對稱點是圓C的一條直徑的兩個端點.
(Ⅰ)求圓C的方程;
(Ⅱ)設過點F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當ab最大時,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•青島二模)已知F1、F2分別是雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點,P為雙曲線右支上的一點,
PF2
F1F2
,且|
PF1
|=
2
|
PF2
|
,則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1,F2分別是雙曲線
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知F1,F2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,且橢圓C的離心率e=
1
2
,F1也是拋物線C1:y2=-4x的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F2的直線l交橢圓C于D,E兩點,且2
DF2
=
F2E
,點E關于x軸的對稱點為G,求直線GD的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1,F2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦點,P是雙曲線的上一點,若
PF1
PF2
=0
|
PF1
|•|
PF2
|=3ab
,則雙曲線的離心率是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲中午字幕 | 91av导航| 久久国产精品精品国产 | 亚洲高清免费视频 | 国产精品欧美日韩在线观看 | 国产成人精品一区二 | 超级碰在线 | 欧美一区二区三区成人 | 综合色综合 | 欧美激情精品久久久久久 | 欧美日韩在线免费观看 | 色视频久久 | 国产精品一卡二卡三卡 | 亚洲精品91| 操人网 | 成人午夜免费视频 | 国产精品视频入口 | 男人天堂视频在线观看 | 日日夜夜综合 | 亚洲高清一区二区三区 | 一级黄色片子免费看 | 不卡成人 | 女人毛片 | 男人操女人bb视频 | 国产伦精品一区二区三区高清 | 娇妻被3p高潮爽视频 | 欧美日韩一区二区在线观看 | 日韩精品一区二区三区在线 | 国产精品夜间视频香蕉 | 国产精品免费在线 | 久久精品影视 | 99这里只有精品视频 | 国产精品一区二区三区在线免费观看 | 91精品久久久久久久 | 日韩美女一区二区三区 | 91麻豆视频| 精品久久久久久久久久久久 | 九色在线| 日韩视频网站在线观看 | 亚洲视频免费网站 | 国产精品久久久久久久午夜片 |