【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD, ,PA=2,E是PC上的一點(diǎn),PE=2EC.
(Ⅰ)證明:PC⊥平面BED;
(Ⅱ)設(shè)二面角A﹣PB﹣C為90°,求PD與平面PBC所成角的大小.
【答案】解:(I)以A為坐標(biāo)原點(diǎn),建立如圖空間直角坐標(biāo)系A(chǔ)﹣xyz,
設(shè)D( ,b,0),則C(2
,0,0),P(0,0,2),E(
,0,
),B(
,﹣b,0)
∴ =(2
,0,﹣2),
=(
,b,
),
=(
,﹣b,
)
∴
=
﹣
=0,
=0
∴PC⊥BE,PC⊥DE,BE∩DE=E
∴PC⊥平面BED
(II) =(0,0,2),
=(
,﹣b,0)
設(shè)平面PAB的法向量為 =(x,y,z),則
取 =(b,
,0)
設(shè)平面PBC的法向量為 =(p,q,r),則
取 =(1,﹣
,
)
∵平面PAB⊥平面PBC,∴
=b﹣
=0.故b=
∴ =(1,﹣1,
),
=(﹣
,﹣
,2)
∴cos< ,
>=
=
設(shè)PD與平面PBC所成角為θ,θ∈[0, ],則sinθ=
∴θ=30°
∴PD與平面PBC所成角的大小為30°
【解析】(I)先由已知建立空間直角坐標(biāo)系,設(shè)D( ,b,0),從而寫出相關(guān)點(diǎn)和相關(guān)向量的坐標(biāo),利用向量垂直的充要條件,證明PC⊥BE,PC⊥DE,從而利用線面垂直的判定定理證明結(jié)論即可;(II)先求平面PAB的法向量,再求平面PBC的法向量,利用兩平面垂直的性質(zhì),即可求得b的值,最后利用空間向量夾角公式即可求得線面角的正弦值,進(jìn)而求得線面角
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面垂直的判定的相關(guān)知識,掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想,以及對向量語言表述線面的垂直、平行關(guān)系的理解,了解要證明一條直線和一個平面平行,也可以在平面內(nèi)找一個向量與已知直線的方向向量是共線向量即可;設(shè)直線的方向向量是
,平面
內(nèi)的兩個相交向量分別為
,若
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+b(a>0,a≠1)滿足f(x+y)=f(x)f(y),且f(3)=8.
(1)求實(shí)數(shù)a,b的值;
(2)若不等式|x﹣1|<m的解集為(b,a),求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公比為正數(shù)的等比數(shù)列{an}中, ,
,數(shù)列{bn}(bn>0)的前n項(xiàng)和為Sn滿足
(n≥2),且S10=100.
( I)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
( II)求數(shù)列{anbn}的前n項(xiàng)和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,若對任意
,存在
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),| |=|
|=|
|=1,
,A(1,1),則
的取值范圍( )
A.[﹣1﹣ ,
﹣1]
B.[﹣ ﹣
,﹣
+
]?
C.[ ﹣
,
+
]
D.[1﹣ ,1+
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為 ,{bn}為等差數(shù)列,且b1=4,b3=10,則數(shù)列
的前n項(xiàng)和Tn= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,最小值為2的是( )
A.y=x+
B.y=sinx+ ,x∈(0,
)
C.y=4x+2x , x∈[0,+∞)
D.y=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上的點(diǎn)到二定點(diǎn)
、
的距離之和為定值
,以
為圓心半徑為4的圓
與
有兩交點(diǎn),其中一交點(diǎn)為
,
在y軸正半軸上,圓
與x軸從左至右交于
二點(diǎn),
.
(1)求曲線、
的方程;
(2)曲線,直線
與
交于點(diǎn)
,過
點(diǎn)的直線
與曲線
交于
二點(diǎn),過
做
的切線
,
交于
.當(dāng)
在x軸上方時,是否存在點(diǎn)
,滿足
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】偶函數(shù)f(x)(x∈R)滿足:f(﹣4)=f(2)=0,且在區(qū)間[0,3]與[3,+∞)上分別遞減,遞增,則不等式xf(x)<0的解集為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com