【題目】如圖,在五面體ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M為EC的中點,AF=AB=BC=FE= AD,
(1)求異面直線BF與DE所成的角的大小;
(2)證明平面AMD⊥平面CDE;
(3)求二面角A﹣CD﹣E的余弦值.
【答案】
(1)解:由題設知,BF∥CE,
所以∠CED(或其補角)為異面直線BF與DE所成的角.
設P為AD的中點,連接EP,PC.
因為FE=∥AP,所以FA=∥EP,同理AB=∥PC.
又FA⊥平面ABCD,所以EP⊥平面ABCD.
而PC,AD都在平面ABCD內,
故EP⊥PC,EP⊥AD.由AB⊥AD,可得PC⊥AD設FA=a,
則EP=PC=PD=a,CD=DE=EC= ,故∠CED=60°.
所以異面直線BF與DE所成的角的大小為60°
(2)解:證明:因為DC=DE且M為CE的中點,
所以DM⊥CE.連接MP,則MP⊥CE.又MP∩DM=M,
故CE⊥平面AMD.而CE平面CDE,
所以平面AMD⊥平面CDE.
(3)解:解:設Q為CD的中點,連接PQ,EQ.
因為CE=DE,所以EQ⊥CD.因為PC=PD,
所以PQ⊥CD,故∠EQP為二面角A﹣CD﹣E的平面角.
可得, .
【解析】(1)先將BF平移到CE,則∠CED(或其補角)為異面直線BF與DE所成的角,在三角形CED中求出此角即可;(2)欲證平面AMD⊥平面CDE,即證CE⊥平面AMD,根據線面垂直的判定定理可知只需證CE與平面AMD內兩相交直線垂直即可,易證DM⊥CE,MP⊥CE;(3)設Q為CD的中點,連接PQ,EQ,易證∠EQP為二面角A﹣CD﹣E的平面角,在直角三角形EQP中求出此角即可.
科目:高中數學 來源: 題型:
【題目】設拋物線C:y2=2px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為( )
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1、F2分別是雙曲線 ﹣
=1(a>0,b>0)的左、右焦點,以坐標原點O為圓心,OF1為半徑的圓與雙曲線在第一象限的交點為P,則當△PF1F2的面積等于a2時,雙曲線的離心率為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形.
(1)求證:BD⊥平面PAC;
(2)若PA=AB,求PB與AC所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義域為R,最小正周期為3π的函數,且在區間(﹣π,2π]上的表達式為f(x)= ,則f(﹣
)+f(
)=( )
A.
B.﹣
C.1
D.﹣1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com