已知橢圓:
(
)的短軸長與焦距相等,且過定點
,傾斜角為
的直線
交橢圓
于
、
兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)確定直線在
軸上截距的范圍.
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)橢圓:
的左、右焦點分別為
,焦距為2,,過
作垂直于橢圓長軸的弦長
為3.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過的直線l交橢圓于
兩點.并判斷是否存在直線l使得
的夾角為鈍角,若存在,求出l的斜率k的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)已知橢圓中心在原點,一個焦點為
,且長軸長與短軸長的比是
。
(1)求橢圓的方程;(5分)
(2)是否存在斜率為的直線
,使直線
與橢圓
有公共點,且原點
與直線
的距離等于4;若存在,求出直線
的方程,若不存在,說明理由。(7分)。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
在直角坐標系中,點
到兩點
,
的距離之和等于
,設點
的軌跡為
。
(1)求曲線的方程;
(2)過點作兩條互相垂直的直線
分別與曲線
交于
和
。
①以線段為直徑的圓過能否過坐標原點,若能求出此時的
值,若不能說明理由;
②求四邊形面積的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題16分)在平面直角坐標系中,
是拋物線
的焦點,
是拋物線
上位于第一象限內的任意一點,過
三點的圓的圓心為
,點
到拋物線
的準線的距離為
.
(Ⅰ)求拋物線的方程;
(Ⅱ)是否存在點,使得直線
與拋物線
相切于點
?若存在,求出點
的坐標;若不存在,說明理由;
(Ⅲ)若點的橫坐標為
,直線
與拋物線
有兩個不同的交點
,
與圓
有兩個不同的交點
,求當
時,
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com