【題目】函數f(x)=(cosx﹣sinx)sin(x+
)﹣2asinx+b(a>0).
(1)若b=1,且對任意 , 恒有f(x)>0,求a的取值范圍;
(2)若f(x)的最大值為1,最小值為﹣4,求實數a,b的值.
【答案】解:(1)當b=1時,函數式可化簡如下:
f(x)=(cosx﹣sinx)(cosx+sinx)﹣2asinx+1
=(cos2x﹣sin2x)﹣2asinx+1=﹣sin2x﹣2asinx+
,
令t=sinx(0<t<),對任意x∈(0,
),恒有f(x)>0,
即為﹣t2﹣2at+>0,分離參數得:﹣2a>t﹣
,
由t﹣在(0,
)遞增,所以,t﹣
<
﹣3=﹣
,
因此,﹣2a>﹣,解得,0<a<
,
即實數a的取值范圍為(0,);
(2)f(x)=﹣sin2x﹣2asinx+b+,令t=sinx(﹣1≤t≤1),
記g(t)=﹣t2﹣2at+b+,圖象的對稱軸t=﹣a<0,且開口向下,
①當﹣a≤﹣1時,即a≥1,函數g(t)在[﹣1,1]上單調遞減,則
g(t)max=g(﹣1)=﹣1+2a+b+=1,
g(t)min=g(1)=﹣1﹣2a+b+=﹣4,
解得a=,b=﹣1;
②當﹣1<﹣a<1時,即0<a<1,函數g(t)在[﹣1,1]上先增后減,則
g(x)max=g(﹣a)=+b+a2=1,
g(x)min=g(1)=﹣1﹣2a+b+=﹣4,
解方程可得a=﹣1,b=2
﹣
,由于a=
﹣1>1,不合題意,舍去.
綜上可得a=,b=﹣1.
【解析】(1)先化簡函數式,將函數化為sinx的二次型函數,再用分離參數法和單調性求解;
(2)討論二次函數在“動軸定區間”上的最值,再列方程求解.
科目:高中數學 來源: 題型:
【題目】下列命題中正確的是( )
A.過平面外一點作這個平面的垂面有且只有一個
B.過直線外一點作這條直線的平行平面有且只有一個
C.過直線外一點作這條直線的垂線有且只有一條
D.過平面外的一條斜線作這個平面的垂面有且只有一個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,函數f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0≤φ≤)的部分圖象,其圖象與y軸交于點(0,
)
(Ⅰ)求函數的解析式;
(Ⅱ)若 , 求
-
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|1﹣|
(1)求滿足f(x)=2的x值;
(2)是否存在實數a,b,且0<a<b<1,使得函數y=f(x)在區間[a,b]上的值域為[a,2b],若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,直線PQ與⊙O切于點A,AB是⊙O的弦,∠PAB的平分線AC交⊙O于點C,連接CB,并延長與直線PQ相交于Q點.
(1)求證:QC·AC=QC2-QA2;
(2)若AQ=6,AC=5,求弦AB的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖:橢圓與雙曲線
有相同的焦點
、
,它們在
軸右側有兩個交點
、
,滿足
.將直線
左側的橢圓部分(含
,
兩點)記為曲線
,直線
右側的雙曲線部分(不含
,
兩點)記為曲線
.以
為端點作一條射線,分別交
于點
,交
于點
(點
在第一象限),設此時
.
(1)求的方程;
(2)證明: ,并探索直線
與
斜率之間的關系;
(3)設直線交
于點
,求
的面積
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com